Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-(4-Chlorophenyl)-8-methyl-2-oxo-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile

Abdullah M. Asiri, ${ }^{\text {a,b }}$ Abdulrahman O. Al-Youbi, ${ }^{\text {a }}$ Hassan M. Faidallah, ${ }^{\text {a }}$ Khadija O. Badahdah ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathrm{c}, \mathrm{a} *}$

${ }^{\text {b }}$ Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, ${ }^{\text {a }}$ Center of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and ${ }^{\text {c Department of }}$ Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: seikweng@um.edu.my
Received 5 September 2011; accepted 5 September 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.065 ; w R$ factor $=0.187 ;$ data-to-parameter ratio $=15.5$.

The six-membered N-heterocyclic ring of the title compound, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}$, is fused with a methyl-substituted cyclohexene ring. The approximately planar nitrogen-bearing ring (r.m.s. deviation $0.019 \AA$) is aromatic, and the N atom shows a trigonal-planar coordination; its benzene substituent is aligned at 77.1 (1) ${ }^{\circ}$. The cyclohexene ring adopts a half-chair conformation. In the crystal, inversion-related molecules are linked by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, generating dimers.

Related literature

For a related compound, see: Asiri et al. (2011).

Experimental

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}$
$M_{r}=298.76$
Monoclinic, C2/c
$a=18.6304$ (4) Å
$V=2974.89(11) \AA^{3}$
$Z=8$
$\mathrm{Cu} K \alpha$ radiation
$b=18.7399$ (4) \AA
$\mu=2.27 \mathrm{~mm}^{-1}$
$c=8.5209$ (2) A
$T=100 \mathrm{~K}$
$\beta=90.229(2)^{\circ}$

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)
$T_{\text {min }}=0.550, T_{\text {max }}=0.935$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.187$ independent and constrained refinement
$\Delta \rho_{\text {max }}=0.79 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.40 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.91(4)$	$1.84(4)$	$2.744(3)$	$174(4)$
Symmetry code: $(\mathrm{i})-x+1,-y+1,-z+1$.				

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis $P R O$; data reduction: CrysAlis $P R O$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: $X-S E E D$ (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank King Abdulaziz University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5320).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Asiri, A. M., Faidallah, H. M., Al-Youbi, A. O., Alamry, K. A. \& Ng, S. W. (2011). Acta Cryst. E67, o2468.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

