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Abstract 
 

In this paper we propose a novel computational algorithm for solving ordinary 
differential equations with non-constants coefficients by using the modified 
version of Laplace and Sumudu transforms which is called Elzaki transform. 
Elzaki transform can be easily applied to the initial value problems with less 
computational work. The several illustrative examples can not solve by 
Sumudu transform, this means that Elzaki transform is a powerful tool for 
solving some ordinary differential equations with variable coefficients. 
 
Keywords: Elzaki transform, Sumudu transform, Laplace transform, 
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Introduction 
Elzaki transform [1,2,3,4], which is a modified general Laplace and Sumudu 
transforms, [1] has been shown to solve effectively, easily and accurately a large class 
of linear differential equations. Elzaki transform was successfully applied to integral 
equations, partial differential equations [2], ordinary differential equations with 
variable coefficients [4] and system of all these equations. 
 The purpose of this paper is to solve differential equations with variable 
coefficients which were not solved by Sumudu transform; this means that Sumudu 
transform failed to solve these types of differential equations. 
 Recently Tarig M. Elzaki [1, 2, 3, 4], introduced a new integral transform and 
named it as Elzaki transform that is defined by the integral equation: 
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 Recall the following theorems that were given by Tarig Elzaki [1,2,3,4] where 
they discussed Elzaki transform of the derivatives. 
 
Theorem (1) 
Let ( )T u is ELzaki transform of ( )f t  ( )( ) ( ) .E f t T u⎡ ⎤=⎣ ⎦ then: 
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Proof 
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 We find that, by using ( )i :  
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( )iii  Can be proof by mathematical induction. 
 Where that Sumudu transform of derivatives is given by: 
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Theorem (2) 
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Proof 
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 Let w ut=  then we have:  
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 Also we have that ( ) ( )1 1T F=  so that both the ELzaki and Laplace transforms 
must coincide at 1u s= = . 
  
 
ELzaki Transform Multiple Shift Theorem 
The discrete ELzaki transform can be used effectively to discern some rules on how 
the general transform affects various functional operations, Tarig M. ELzaki prove 
that  
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Theorem 3 
Let ( )T u  be ELzaki transform of the function ( )f t  in ,A then ELzaki transform of 

the function ( )tf t  is given by: ( ) ( ) ( )2 d
tf t u T u uT u

du
⎡ ⎤Ε = −⎣ ⎦   

 
Proof 
The function ( )t f t  is in ( ), sinA ce f t  is so: and integrating by parts we find that: 
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 In the general cases we can external theorem 3 as, 
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 The proof of these equations is easy, by using theorem 3. 
 And Sumudu transform of these is given by: 
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 Where ( )F u  is the Sumudu transform of ( )f t . 
 
Example 1 
Consider the second order initial value problem: 
 2 24 2 12 , (0) (0) 0t y ty y t y y′′ ′ ′+ + = = =  (1) 
 
 First we apply Sumudu transform to this equation to find: 
 2 2( ) 4 ( ) 2 ( ) 24u F u uF u F u u′′ ′+ + =  
 
 Which is the same equation (1), this means that Sumudu transform can not solve 
this equation. 
 Now if apply Elzaki transform to equation (1) and make use of the initial 
conditions and above theorems, then we find: 
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 The solution of the last equation is 4

1 2( ) 2T u u c u c= + + , using the conditions to 
find 1 2 0c c= = , then 4( ) 2T u u= . 
 By using the inverse Elzaki transform we find the solution in the form: 2( )y t t= . 
 
Example 2 
Consider the third order non-constant coefficients differential equation: 
 2 26 6 60 , (0) (0) (0) 0t y ty y t y y y′′′ ′′ ′ ′ ′′+ + = = = =  (2) 
 
 If we using Sumudu transform, and the initial conditions we fid that: 
 2 2( ) 4 ( ) 2 ( ) 120u F u uF u F u u′′ ′+ + =  
 
 Which is the same equation (1), and again Sumudu transform fails to solve this 
equation. 
 Now by applying Elzaki transform to equation (2) and making use of the initial 
conditions, we get: 
 3 5

1 2( ) 120 ( ) 6T u u and T u u c u c′′ = = + +  
 
 By using the initial conditions we find: 1 2 0c c= = , then 5( ) 6T u u=  and 3( )y t t=  
 This is the exact solution of equation (2). 
 
 
Conclusion 
In this paper, we have introduced the modified version of Sumudu and Laplace 
transforms, namely Elzaki transform for solving differential equations with variable 
coefficients which was not solved by Sumudu transform. It has been shown that 
Elzaki transform is a very effective method for solving initial value problems 
compared with Sumudu transform. In a large domain the accurate convergence of 
Elzaki transform will be discussed in the coming research.  
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Appendix 
ELzaki Transform of some Functions  
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