
Towards Integration of Business
Processes and Semantic Web Services

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Doctor Ingenieur
(Dr.-Ing.)

im Fachgebiet

Informatik

vorgelegt

von Muhammad Ahtisham Aslam

geboren am 25 September 1979 in Jaranwala

Die Annahme der Dissertation haben empfohlen:

1. Prof. Dr. Ing. habil. Klaus-Peter Fähnrich
2. Prof. Dr. Ing. Wilhelm G. Spruth
3. Prof. Dr. Yun Yang

Die Verleihung des akademischen Grades erfolgt auf Beschluss des Rates der Fakultät für
Mathematik und Informatik vom mit dem Gesamtprädikat

Dedication

To my brother ”Mian Arshad”
Who, for me is
Like my father
Like my mother
Like my sister
Like my friend
Who is not GOD
But
Like GOD for me

i

Acknowledgements

I would like to thank a number of people who have guided, assisted and supported me in
my research work and in writing this thesis. First of all, I would like to thank my super-
visor, Prof. Dr. Klaus-Peter Fähnrich who guided, supported and helped me throughout
my PhD work. Prof. Fähnrich provided an excellent and challenging research envi-
ronment to a number of researchers under the roof of Betriebliche Informationssysteme
(Business-oriented Information Systems) at University of Leipzig.

Out of other researchers at Business-oriented Information Systems research group, I
would like to say special thanks to Dr. Sören Auer who guided, helped, supported and
motivated me in every aspect of my research work. I would feel happy to admit that
continuous guidance and encouragement of Dr. Sören Auer helped me in completing my
thesis which otherwise was looking very tough and difficult to me.

I would also like to thank Dr. Jun Shen (from the University of Wollongong) and
Michael Herrmann (from DaimlerChrysler AG) for their support and co-operation in my
research work.

It is important to note that this work is partially supported by the Higher Education
Commission (HEC) (www.hec.gov.pk) of Pakistan under the scheme ”Partial Support
Scholarship for PhD Studies Abroad”.

At the end, I would like to thank my family and friends who encouraged me at every
stage of my work. Even though they were not able to give me any technical support
but it was their moral support which motivated me and encouraged me at every tough
time. I would also like to thank some one, to whom I can not mention here and whose
expected arrival in my life was a big motivation for me to complete my PhD work.

Muhammd Ahtisham Aslam
25-05-2007

ii

Abstract

Business processes are modeled as syntax based compositions of multiple services to per-
form tasks that a single Web service alone can not perform. When these processes are
exported as services they have same syntactical limitations as traditional WSDL ser-
vices resulting in clampdown for their dynamic discovery, invocation and composition by
other semantic enabled systems. Successfully translating existing business processes to
semantic Web services can help to address syntactical limitations of business processes
and enabling them for semantic based composition editing, modeling and for dynamic
discovery, invocation and composition by other semantic enabled systems.

The aim of this thesis is to bridge the semantic gap between business processes and se-
mantic Web services. Bridging the semantic gap between business processes and semantic
Web services can help 1) to edit and model the compositions of Web services on the basis
of matching semantics 2) to expose semantically enriched interfaces of business processes
that can be used for dynamic and automated discovery, invocation and composition of
business processes as semantic Web services.

The approach presented in this thesis describes solutions for bridging the semantic gap
between syntax based and semantic based composition of Web services both at architec-
tural as well as technical levels. To meet architectural requirements, a new 4-tier semantic
Web service integration and composition architecture has been presented. The proposed
4-tier architecture addresses issues like developing domain ontologies, describing seman-
tics of Web services, interfacing between different layers of integration architecture and
semantic enhancements in Web service related machinery (e.g. UDDI). The approach
presented in this thesis uses upcoming semantic Web service language (i.e. OWL-S)
to address syntactical limitations of traditional business process modeling language (i.e.
BPEL) by mapping BPEL processes to OWL-S services. The Process Model ontology of
OWL-S suite is used to define the semantic based composition of services by translating
BPEL process model (which is syntax based composition of Web services) to OWL-S
composite process (which is semantic based composition of Web services). Each Web ser-
vice operation with in a BPEL process model is translated to an OWL-S atomic process
and the resulting OWL-S composite service is composition of these atomic processes with
defined control and data flow. The Profile ontology of mapped OWL-S service can be
used to expose semantically enriched interface of the BPEL process as OWL-S service.
This semantically enriched interface can be used for semantic based dynamic discovery,
invocation and composition of BPEL process as OWL-S service. The Grounding ontol-
ogy of mapped OWL-S service describes how to interact with the service. A tool has also
been developed that can be used to map existing business processes to OWL-S services.
An important feature of the implemented tool is that it supports the mapping of BPEL
process to complete OWL-S suite of ontologies. Also, each Web service operation with in
a BPEL process model is mapped to OWL-S atomic process with complete OWL-S suite
of ontologies (i.e. Profile, Process Model and Grounding).

iii

The main contributions of this thesis can be summarized as follows: First of all a
new 4-tier architecture for semantic Web service composition and integration has been
presented. On the basis of 4-tier architecture I proposed a semantic Web service compo-
sition and integration life cycle and a framework for semantic based composition of Web
services. The framework consists of four components and each component is responsible
to perform a specific task (e.g. discovery, selection, composition and execution) in the
whole semantic Web service integration and composition life cycle. Second, I describe
mapping constraints that can be used to establish the correspondence between syntax
based and semantic based compositions of Web services. Third, on the basis of mapping
constraints I present mapping specifications and algorithms that can be used to trans-
late existing BPEL processes to OWL-S suite of ontologies. Fourth, a tool (BPEL4WS
2 OWL-S Mapping Tool) has also been developed that can be used to translate existing
BPEL processes to OWL-S services. Mapping BPEL processes to OWL-S services over-
comes syntactical limitations of BPEL processes and enables them for semantic based
editing and modeling of Web services compositions. Also, the BPEL process mapped
to an OWL-S service can be used for dynamic and automated discovery, invocation and
composition by other semantic enabled systems. Finally evaluation of the proposed work
has been provided by implementing it in a use case scenario.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 An Example Scenario . 3
1.3 Research Questions . 6
1.4 Background . 8
1.5 Research Contributions . 10
1.6 Thesis Outline . 11

2 Semantic Web Service: State of The Art 15
2.1 Introduction . 15
2.2 Web Service . 16
2.3 Semantic Service Oriented Architecture 18
2.4 Workflow Modeling . 20
2.5 The Semantic Web . 20
2.6 Emerging Semantic Web Service Languages 22

2.6.1 WSDL-S . 22
2.6.2 WSMO . 23
2.6.3 OWL-S . 23

2.7 AI Planning for Web Service Composition 24
2.8 Summary . 25

3 SWS Composition: Architecture and Framework 27
3.1 Introduction . 27
3.2 SWS Composition Approaches . 29

3.2.1 A Bottom-Up Approach . 29
3.2.2 METEOR-S Approach . 30
3.2.3 Template Based Composition . 30
3.2.4 Semi-automatic Composition . 31
3.2.5 WSMO Composition Approach . 31
3.2.6 Some Other Composition Approaches 31

3.3 Limitations of Current Composition Approaches 32
3.4 4-Tier Integration Architecture . 35
3.5 Integration and Composition Life Cycle 37
3.6 SWS Composition Framework . 40

v

3.7 Summary . 42

4 Mapping Constraints 43
4.1 Introduction . 43
4.2 BPEL4WS Process Model Analysis . 44

4.2.1 Processes . 44
4.2.2 Partner Link . 45
4.2.3 Primitive Activities . 45
4.2.4 Structured Activities . 47
4.2.5 Some Additional Activities . 48

4.3 OWL-S Ontology Analysis . 48
4.3.1 OWL-S: Technical Overview . 48
4.3.2 Processes . 50
4.3.3 Performing Individual Processes 52
4.3.4 Control Constructs . 52
4.3.5 Condition Expressions . 53
4.3.6 Data Flow and Parameter Binding 54
4.3.7 Parameters and Results . 54

4.4 Summary . 54

5 Mapping BPEL Process Descriptions to OWL-S 55
5.1 Introduction . 55
5.2 Mapping Specifications . 56
5.3 Mapping to the OWL-S Process Model Ontology 58

5.3.1 BPEL Process to OWL-S Composite Process 59
5.3.2 Web Service Operation to OWL-S Atomic Process 59
5.3.3 Primitive Activity to Perform Construct 59
5.3.4 Structured Activity to OWL-S Control Construct 60
5.3.5 Condition Statement to SWRL Expression 63
5.3.6 Message Assignment to Data Flow 65
5.3.7 Variables to Local Parameters . 67

5.4 Mapping to the OWL-S Profile Ontology 67
5.4.1 Extracting the Profile Ontology . 68
5.4.2 Annotating Profile Ontology Parameters 70

5.5 Mapping to the OWL-S Grounding Ontology 72
5.6 Summary . 74

6 Prototype Implementation 75
6.1 Introduction . 75
6.2 Related Work . 76
6.3 Features of BPEL4WS 2 OWL-S Mapping Tool 77
6.4 Implementation . 78

6.4.1 Architecture . 79
6.4.2 User Interface . 80

6.5 General Usage . 81
6.6 Summary . 82

vi

7 Evaluation 83
7.1 Answers to Research Questions . 83
7.2 Motivational Scenario: An Evaluationary Revision 86
7.3 Answer to the Main Research Question 88

7.3.1 Semantically Enriched Interface . 88
7.3.2 Semantic Based Composition . 89

7.4 Summary . 91

8 Discussion and Conclusion 93
8.1 Discussion . 93
8.2 Application Areas . 94
8.3 Contributions of This Thesis . 95
8.4 Open Issues and Future Work . 96

A BPEL Process Modeled in MS BizTalk Server 99

B Mapped OWL-S Atomic Process 101

C Mapped OWL-S Composite Service 103

D Semantically Enriched and Extended OWL-S Service 107

Bibliography 111

vii

viii

List of Figures

1.1 Sequence of services in process according to first scenario. 4
1.2 Sequence of services in process according to second scenario. 6
1.3 Overview of this document. 13

2.1 Evolution and relation between Web service, workflow, semantic Web and
semantic Web service languages. 18

2.2 Semantics based Service Oriented Architecture. 19
2.3 Relational semantics defined with OWL ontology. 21
2.4 Overview of WSDL-S approach. 23

3.1 Enabling business processes for dynamic and automated discovery, invoca-
tion and composition by mapping them to OWL-S SWSs. 29

3.2 4-tier semantic Web services integration architecture. 35
3.3 SWS integration and composition life cycle. 38
3.4 Architecture of dynamic and automated Web service composition framework. 41

4.1 OWL-S Process Model ontology. 51

5.1 OWL-S atomic processes generated from WSDL operations. 60
5.2 Annotating Profile ontology with domain ontology concepts. 70

6.1 Architecture of the BPEL4WS 2 OWL-S Mapping Tool. 80
6.2 Overview of BPEL4WS 2 OWL-S Mapping Tool. 81
6.3 Sequence of steps (with menu items and short keys) to perform a mapping

task. 82

8.1 An overview of SWSs development tool (Protégé (OWL-S Editor)). 97

ix

x

List of Tables

2.1 Comparison of SWS languages. 24

3.1 Comparison of some existing dynamic and automated Web service compo-
sition approaches.
. 34

4.1 Analytical description of BPEL process model activities with respect to
mapping constraints. 49

4.2 Analytical description of OWL-S ontology constructs with respect to map-
ping constraints. 53

5.1 Summary of BPEL4WS to OWL-S mapping specifications. 57

List of Algorithms

1 Abstract level definition of mapping algorithm. 58
2 Mapping of structured activities to OWL-S CCs. 61
3 Algorithm to traverse through Switch activity and its case elements and to

map them to relevant OWL-S CCs. 63
4 Algorithm to parse condition statement and to generate SWRL expression. 64

xi

Publications

• M. A. Aslam and Sören Auer: Book Chapter for Semantic Web Methodologies for
E-Business Applications: Ontologies, Processes and Management Practices Book,
Garćıa, R. (ed.), Idea Group Publishing, book scheduled for publication in 2008.

• M. A. Aslam, S. Auer, J. Shen and K. Fähnrich: Bridging the Semantic Gap Be-
tween Business Processes and Semantic Web Services. Journal of Internet Tech-
nology, Taiwan, ISSN: 1607-9264 Vol.8 No.4 2007-TAAI 2006 Special issue-06, pp
433-443.

• M. Herrman, M. A. Aslam and O. Dalferth: Applying Semantics (WSDL, WSDL-
S, OWL) in Service Oriented Architectures (SOA). Proceedings of the 10th Intl.
Protégé Conference, July 15-18, 2007, Budapest, Hungary.

• M. A. Aslam, S. Auer, J. Shen, M. Herrmann: An Integration Life Cycle for Seman-
tic Web Services Composition. Proceedings of the 11th International Conference on
Computer Supported Cooperative Work in Design (CSCWD 07), April 26-28, 2007,
Melbourne, Australia, ISBN 1-4244-0962-4, pp 490-495.

• M. A. Aslam, S. Auer, J. Shen, M. Herrmann: Web Services Composition to Facili-
tate Grid and Distributed Computing: Current Approaches and Future Framework:
Proceedings of 4th International Workshop on Frontiers of Information Technology
(FIT 2006), December 20-21, 2006, Islamabad, Pakistan.

• M. A. Aslam, M. Herrmann, S. Auer, R. Golden: Real-life SOA experiences and
an Approach Towards Semantic SOA. Proceedings of 4th International Workshop
on SOA and Web Services in conjunction with ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2006), October 22-26, Portland, Oregon, USA, ISBN 82-997428-0-3, pp.
72-81.;

• M. Herrmann, M. A. Aslam: Mercedes Car Group (MCG) Enterprise Architektur -
Ein Ansatz zur semantischen Modellierung der Services in einer SOA. In: Fähnrich,
K.-P., Kühne, S. Speck, A. Wagner, J. (Hrsg.): Integration betrieblicher Informa-
tionssysteme: Problemanalysen und Lösungsansätze des Model-Driven Integration
Engineering, Leipziger Beiträge zur Informatik: Band IV. Leipzig: 2006, S. 145-151,
ISBN-10: 3-934178-66-9, ISBN-13: 978-3-934178-66-3.(German Paper).

• M. A. Aslam, S. Auer, J. Shen, M. Herrmann: Expressing Business Process Model
as OWL-S Ontologies. Proceedings of the 2nd International Workshop on Grid and
Peer-to-Peer based Workflows (GPWW 2006) in conjunction with the 4th Interna-
tional Conference on Business Process Management (BPM 2006), Vienna, Austria,
LNCS 4103 , Sept. 4, 2006, pp.400-415.

• M. A. Aslam, S. Auer, J. Shen: From BPEL4WS Process Model to Full OWL-
S Ontology. In proceedings of Posters and Demos 3rd European Semantic Web
Conference (ESWC 2006), Budva, Montenegro, June 11-14, 2006, pp. 61-62.

xii

Chapter 1

Introduction

The goal of this work is to bridge the semantic gap between business processes and seman-
tic Web services to enable business processes for 1) semantic based editing and modeling
of Web services compositions 2) to expose semantically enriched interfaces of business
processes that can be used for dynamic and automated discovery, invocation and compo-
sition of business processes as semantic Web services. For this purpose a 4-tier semantic
Web service composition and integration architecture, semantic Web service composition
life cycle and a framework for dynamic and automated Web service composition has been
presented. Based on these theoretical concepts I have presented an approach that can be
used to shift existing business processes to semantic Web services. A prototypical tool
(BPEL4WS 2 OWL-S mapping tool1) has also been developed for translating existing
business processes (BPEL processes) to semantic Web services (OWL-S services).

In this chapter I give an overview of this document. First of all I describe the motiva-
tion for my work. Then I give an example scenario that helps to understand the research
problem in broader sense and to set boundaries of my work. Then I discuss the research
questions with in defined problem domain. After providing a short background of my
work, I describe the proposed solution as in the form of my research contributions. At
the end of this chapter I give the outline of my thesis.

1.1 Motivation

Rapidly changing trend of developing business applications as services resulted in quick
adoption of Web services. With this wide acceptance of Web services different archi-
tectural approaches (e.g. [56]) for integration of Web services and workflow languages
(e.g. BPEL4WS [42, 62], MS XLANG [59, 13], IBM WSFL [68]) have been developed.
These workflow languages can be used to model business processes as syntax based com-
positions of multiple Web services to perform complex tasks that a single Web service
alone cannot perform. Major drawbacks of these languages are 1) they compose Web

1BPEL4WS 2 OWL-S Mapping Tool is open source project and it can be downloaded from:
http://bpel4ws2owls.sourceforge.net/

1

services on the basis of their syntactical information following the traditional 3-tier busi-
ness application integration architecture 2) when these processes are exported as services
they have same syntactical limitations as traditional WSDL [31] services. Modeling Web
services compositions and discovering, invoking and composing them on the basis of syn-
tactical information is inefficient and unreliable approach. Semantic Web and semantic
Web services (in remaining thesis I will write the term semantic Web service as ”SWS”
and semantic Web services as ”SWSs”) community is working on different languages (e.g.
OWL-S [71, 72], WSDL-S [15, 77] and WSMO [19, 51]) to provide Web service semantics
and approaches to dynamically discover, invoke and compose these services on the basis of
matching semantics. In the early stage of my research work I realized that with semantic
enhancements in Web services, a new architectural approach is needed that can be used
to integrate these semantically enriched business services. Also, in addition with seman-
tic based Web service integration and composition architecture an approach is needed to
transfer existing business processes (e.g. BPEL processes which are syntax based com-
positions of Web services) to semantic based compositions of Web services (e.g. OWL-S
composite services). Such an approach will help not only to edit and model the com-
position of services on the basis of matching semantics but also to provide semantically
enriched information about processes (BPEL processes) as OWL-S composite services.
This semantically enriched information can be used for dynamic discovery, invocation
and composition of processes as SWSs.

Enhancing existing business processes with semantics and enabling them for semantic
based composition editing, modeling and for dynamic discovery, invocation and compo-
sition needs to address the following major research problems:

• Developing architecture for integration and composition of semantic based Web
services.

• Establishing the correspondence between syntactical and semantic based Web ser-
vices composition. Establishing such a correspondence includes:

– Providing semantics of individual services with in processes.

– Modeling the composition of services on the basis of matching semantics.

– Providing semantics of composite services (processes) that are modeled as com-
position of multiple SWSs.

By successfully addressing these problems we can:

• Provide a basic architecture needed to integrate and compose SWSs on the basis of
matching semantics.

• Provide semantics of processes as composite services for the purpose of dynamic
discovery, invocation and composition.

• Composition can further be edited on the basis of matching semantic information
rather than syntactical information to model more complex services.

2

The aim of this thesis is to shift existing business processes from a syntactical to
semantic based environment rather than to build semantic enabled business applications
(processes) from scratch. For this purpose I analyzed the problem from ground resulting
in my research contribution as theoretical approach and implemented tool that can be
used to address the mentioned research problem. In next section I provide an example
scenario which will help to understand the problem at more concrete level.

1.2 An Example Scenario

In order to understand the problems raised due to syntactical limitations of BPEL pro-
cesses we consider an example scenario of syntax based Web services composition (BPEL
process). The example scenario helps to realize needs for establishing correspondence
between syntax based and semantic based compositions of Web services.

To keep the complexity of scenario within limitations we consider a simple Translator
and Dictionary process example (available with tool download). Translator and Dictio-
nary process is modeled in MS BizTalk Server [13] as syntax-based composition of two
services (i.e. Translator service and Dictionary service). Translator service is a Web
service that can be used to translate a string from one language to another supported
language. Dictionary service is a Web service that can be used to get the meaning of an
English word in English (i.e. only English language is supported by Dictionary service).
Now I define two problem tasks that can not be performed by anyone of these two services
(i.e. Translator Service or Dictionary Service). These two tasks are:

1. How we can get the meaning of a German word in English? Because Dictionary
service supports only meaning of an English word in English, not the meaning of a
German word in English.

2. How we can get meaning of a German word in German? Because Translator service
only translates string from one language to other language (not give the meaning of
a word) and Dictionary service gives the meaning of only English words in English.

In both of above scenarios none of a single Web service is able to perform required
tasks. As a solution, I model a BPEL process as syntax based composition of these
services (i.e. Translator and Dictionary services) to perform the task defined in first
scenario. Then I highlight what are limitations of such a syntax based Web services
composition (process). In remaining chapters of this thesis I describe architectural and
conceptual aspects of such a syntax based Web services composition and provide their
solutions. I also describe a strategy to translate syntax based Web services compositions
to semantic based Web services compositions. The process modeled to perform the task
defined in first scenario consists of the following steps (as show in Figure 1.1):

1. Process accepts input string (i.e. German word) from user (may be another service).

2. Transfer this string as an input of the Translator service to translate string from
German to English.

3

3. Output of the Translator service (i.e. English translation of input string) is given
as an input to the Dictionary service.

4. As a last step of the process, the Dictionary service returns meaning of the input
string.

Figure 1.1: Sequence of services in process according to first scenario.

If we analyze the process (composition of Web services) more at semantic level then
following problems are identified:

1. When a process is exported as a Web service, it has same syntactical limitations
as traditional WSDL service (i.e. syntactical interface) resulting in clampdown of
process for dynamic discovery, invocation and composition.

2. If we want to extend the process (discussed in first scenario (Figure 1.1)) in a
semantic environment to perform the task pointed in second scenario (Figure 1.2)
then we will realize that:

(a) Web services with in composition provide no information for semantic based
editing and modeling of process. For example consider input message (Ex-
ample 1) required by Translator service. This message provides no semantic
information about message parts (i.e. ”inputString”, ”inputLanguage” and
”outputLanguage”).

Example 1. A sample WSDL syntax based message.

1 <wsdl:message name="TranslatorRequest">
2 <wsdl:part name="inputString" type="s:string" />
3 <wsdl:part name="inputLanguage" type="s:string" />
4 <wsdl:part name="outputLanguage" type="s:string" />
5 </wsdl:message>

(b) Semantic limitation of Web services with in process restrict to dynamically
discover and compose (on the basis of matching semantics) other SWSs (e.g.
semantically enriched Translator service).

4

Bridging the semantic gap between syntax based and semantic based composition of
Web services can help to address above discussed problems. Example 2 shows annotation
of input message part ”inputLanguage” with ontology concept ”SupportedLanguage”
defined in appropriate domain ontology. Providing such semantic information can help
to:

• Provide semantically enriched interface of the process as an OWL-S composite ser-
vice that can help in dynamic discovery, invocation and composition of BPEL pro-
cess as a SWS.

• Translate the process from syntax-based to semantic based composition which pro-
vides semantically enriched information about each service involved with in the
composition.

• Edit and model the composition on the basis of matching semantics rather than
relying just on syntactical information.

• Defining abstract process (semantically enriched Web service request) with in com-
position to dynamically discover and compose a service on the basis of matching
semantics defined in abstract process (according to the approach discussed in [100]).

• Using an AI planning for automated composition by mapping OWL-S composite
and atomic processes to tasks and operators of the planning languages (e.g. HTN
planning).

Example 2. Semantically enriched message part.

1 <process:Input rdf:ID="inputLanguage">
2 <process:parameterType rdf:datatype="&xsd;#anyURI">
3 &languages;#SupportedLanguage</process:parameterType>
4 <rdfs:label>Input Language</rdfs:label>
5 </process:Input>

In above discussed simple but extensive example we have just considered inputs and
outputs of different services for the purpose of composition. In actual scenarios we can
use other information related to a Web service (e.g. service provider, response time,
geographical location etc.) for more accurate and efficient composition of Web services.
One thing to note at this point is that we have provided two example scenarios (tasks) for
modeling processes as Web services composition. For first scenario we modeled a BPEL
process in MS BizTalk Server (BPEL file of the process is attached in Appendix A). Then
I highlighted limitations of such syntax based process modeling. In Chapters 4 and 5,
I provide a detail analysis of BPEL process models and OWL-S SWSs and then on the
basis of this analysis I define the mapping specifications. In remaining chapters I use this
BPEL process to provide some code samples of mapping specifications. Until we reach
the evaluation chapter (Chapter 7) the whole BPEL process is mapped to OWL-S service.
Then I use this mapped OWL-S service to answer the problem questions (discussed above).
In evaluation chapter (Chapter 7) I enhance the mapped OWL-S service (Process Model

5

ontology) in semantic environment (e.g. Protégé [55, 12] (OWL-S Editor [47, 10]) or even
with simple editor like Note pad) to develop OWL-S composite service (SWS) for second
scenario (i.e. getting the meaning of German word in German) by editing and extending
mapped OWL-S service (on the basis of matching semantics) by the following steps (as
shown in Figure 1.2):

1. Process accepts the input string (German word) from the user.

2. Transfer this string as an input to Translator service to translate the string from
German to English.

3. The output of the Translator service (i.e. English translation of input string) is
given as an input to the Dictionary service.

4. The output of the Dictionary service (meaning of the word) is given as input to the
Translator service to translate it back from English to German.

5. As a last step of the process Translator service translates the string (meaning of
the word) back from English to German.

Figure 1.2: Sequence of services in process according to second scenario.

The evaluation section also describes how the Profile ontology of the mapped OWL-S
service provide semantics of BPEL process as OWL-S service for the purpose of business
process automation.

1.3 Research Questions

The overall research question that I tried to answer in this thesis is:

How existing business processes can be shifted from a syntax based to semantic
based environment to enable them for semantic based composition editing, modeling and
dynamic discovery, invocation and composition by other semantic enabled systems?

6

To answer this question in detail I define a set of research questions. These research
questions actually are sub part of the main research problem. Answers to these questions
help to understand the main research problem in small steps.

RQ 1. What Web service is and how we can provide Web service semantics?

– What Web services and its related standards are?

– How we can add semantics to Web services?

RQ 2. Is existing application integration architecture and framework enough for semantic
based dynamic integration and composition of business processes as SWSs?

– How workflow and AI planning can effect semantic based composition of busi-
ness processes as SWSs?

– Is traditional syntax based application integration architecture is enough for
composition and integration of SWSs?

– In a semantic enabled composition process, how business and technical con-
straints can be used?

RQ 3. How correspondence can be established between syntax and semantic based com-
position of Web services (i.e. BPEL process model and OWL-S composite service)?

– How we can semantically express components of a business process (which is
composition of syntax based Web services)?

– How a SWS language (e.g. OWL-S) can be used to model the composition of
Web services on the basis of matching semantics?

RQ 4. How a BPEL process model can be mapped and expressed as OWL-S SWS?

– How we can extract information about interface of BPEL process model and
express it semantically?

– How the information about control and data flow can be extracted from a
BPEL process model and expressed in SWS language (i.e. OWL-S)?

– How interaction protocol and complex messages can be extracted from BPEL
process model and defined in OWL-S?

RQ 5. Is translation of BPEL process models to OWL-S ontologies can help for semantic
based discovery, invocation and composition of BPEL processes as OWL-S services?

– How semantics of a Web service can be used for reasoning?

– How the execution of business processes as OWL-S services can be supported?

7

1.4 Background

The general research question states that my research efforts aim at addressing syntacti-
cal limitations of business processes and enhancing them with semantics to enable them
for dynamic discovery, invocation and composition. There were different research direc-
tions for choosing this research area. These research directions are described below as
motivational background of my work.

• First of all, I was motivated by Web service initiative and its definition at an early
stage of Web service project. According to this definition Web service is described as
platform independent technology that can be interacted in a computer understandable
way. Web service community was successful in providing a platform independent
service technology as WSDL [31] services and its related standards (i.e. WSDL
[31], UDDI [41] and SOAP [58]) but seamless interaction between Web services is
still an open question. Complex business tasks that a single Web service alone is
not able to perform requires to compose multiple services together to perform that
task. Such requirements resulted in development of different workflow languages
(e.g. BPEL) that can be used to compose multiple Web services to perform a
required task. Different tools such as MS BizTalk Server [13], IBM WebSphere [26],
SAP Netweaver [17] etc. support the modeling of business processes as composition
of multiple services. The major limitation at this stage is lack of semantics in Web
services descriptions that result in manual discovery, invocation and composition of
these services.

• Second, I was inspired by research efforts in the area of semantic Web and SWSs to
provide computer understandable meanings of Web services. Research initiatives to
provide semantics of Web services fall at two levels 1) developing domain ontologies
to provide domain specific information 2) developing languages that use this domain
specific information to provide Web service semantics. At first level (i.e. developing
domain ontologies) OWL is the major language that can be used to develop domain
ontologies. Different efforts (e.g. OWL-S, WSMO and WSDL-S) started for the
development of SWS languages. The ultimate goal behind all these efforts is to
develop a language that can be used to provide semantically enriched descriptions
of Web services by annotating them with domain ontologies.

• Third, while talking about developing and integrating business applications, dif-
ferent architectural approaches for integrating business applications have been pre-
sented (e.g. [106, 103]). Among these approaches 3-tier architecture for integration
of business applications meets demands of most of integration scenarios. Rapidly
changing trend of developing business applications as business services and further-
more semantic enhancements in service technology resulted in some initiatives to
develop SWS integration and composition architectures (e.g. [56, 39]). Part of my
research work was inspired by these initiatives to develop architecture for integration
and composition of semantically enriched applications (services).

• Fourth and the most important inspiration of my work was different efforts that
have already been done by different research groups to establish correspondence

8

between syntax based and semantic based composition of Web services. None of these
efforts were able to successfully address above discussed research questions. Since,
among different SWS languages, OWL-S is the language that supports modeling
a composite service by composing different services on the basis of their matching
semantics therefore, these research groups worked on transforming the business
processes to OWL-S composite service. These efforts were only able to establish the
transformation between partial components of these languages. For example the
work discussed in [80, 90, 92, 78, 38] describe some efforts to create correspondence
between individual components of syntactic and semantic based languages. These
efforts resulted as an initial point as well as provided me some future directions for
more research work to be done to support different research projects (e.g. SwinDew
[89, 91, 94]) to enable them with semantic support and to help existing legacy
systems shifting to semantic based environment.

• Fifth motivational background for my work is that a considerable number of re-
search projects are working in this area. For example, OWL-S API [96, 99] (by
”mindswap”) has been developed and is under continuous improvement with the
coming versions of SWS language (OWL-S). OWL-S API can be used to program-
matically read, write and execute SWSs. Currently going on esearch projects (e.g.
Transitioning Applications to Ontologies (TAO)2 [82, 29]) also aims at developing
methodologies for transitioning existing or legacy systems into reusable, semanti-
cally described services. Also, tools like OWL-S Editor [48] has been developed
to visually edit and model composite services (composition of SWSs). Semantically
enriched information about Web services capabilities can be provided by annotating
them with domain ontologies (OWL ontologies) developed in semantic Web tools
like Protégé [55]. Future work of these research groups also point out needs to de-
velop approaches and their implementation to map Web services composition from
syntactical language (e.g. BPEL) to SWS language (e.g. OWL-S). The resulting
OWL-S service can be edited in semantic based visual tool like OWL-S Editor.
Also, there exist some approaches (e.g. [100]) that can be used to define abstract
processes with in a composite service so that services matching to semantics of ab-
stract processes can be dynamically discovered and composed in resulting composite
service.

My research work is an effort to achieve business process automation by providing
semantically enriched descriptions of business processes. Larger semantic Web frame-
works (e.g. Protégé (OWL-S Editor) and SwinDew [91, 94]) have shown their interest
in this work to improve their tools and systems to provide richer support for semantic
enabled processes. To accomplish research targets and to answer above discussed research
questions I use these initiatives and research work that already has been done (as dis-
cussed above) in this area. My work uses the most important and industry wide accepted
standard (i.e. OWL-S) to bridge the gap between syntax based and semantic based com-
position of Web services. Also, utilization of this work in collaboration with projects
and systems (e.g. SwinDew and Protégé (OWL-S Editor)) provided motivation for this

2http://www.tao-project.eu/

9

work. Also the new SWS integration and composition architecture discussed in this work
provides a good base for future development of SWS and semantic based integration tools.

1.5 Research Contributions

I have approached the problem and addressed the above discussed research questions by
proposing a new 4-tier SWS integration and composition architecture and a life cycle for
SWS composition. A general framework at an abstract level for dynamic and automated
composition of Web services has also been presented. I also have presented an approach
which addresses issues to establish correspondence between business processes (BPEL
processes) and SWSs (i.e. OWL-S services). Mapping specifications and algorithms have
been presented to map existing business processes (i.e. BPEL processes) to OWL-S
services. A prototypical implementation of the proposed approach have been presented
that can be used to map BPEL processes to OWL-S services. My thesis has resulted in
following research contributions:

• First of all, a new 4-tier architecture has been proposed to meet integration and
composition requirements for integration and composition of business processes as
semantically enriched Web services. The proposed architecture addresses issues
(e.g. semantic based Web services interfaces and queries, bridging semantic gap
between different integration layers, UDDI enhancements with semantics etc.). The
proposed 4-tier architecture has been discussed in my work [25, 76]. On the basis of
4-tier architecture I propose a SWS integration and composition life cycle [24] and
a general framework at an abstract level for dynamic and automated composition of
business process as SWSs [23]. The composition framework follows the approach
of newly proposed 4-tier SWS integration and composition architecture and SWS
integration and composition life cycle. Chapter 3 covers the proposed architectural
approach in more detail.

• Second, mapping constraints on the basis of matching functional characteristics of
BPEL activities and OWL-S control constructs have been described in Chapter 4.
Process modeling and semantic capabilities of BPEL process model and OWL-S suite
of ontologies have been analyzed in detail and mapping constrains have been defined
to establish a correspondence between BPEL and OWL-S. Mapping constrains also
addresses mapping issues very well for activities which have dual behavior with in
BPEL process model.

• Third, mapping specifications and mapping algorithms have been described in Chap-
ter 5. Mapping specifications shows that how OWL-S suite of ontologies (i.e. Pro-
file, Process Model and Grounding ontologies) can be extracted from BPEL process
model. It also aims at describing that how control flow and data flow can be de-
fined between child processes with mapped OWL-S composite service. Mapping
algorithms show that how efficiently different BPEL activities can be mapped to
OWL-S control constructs.

• Fourth, I have developed a tool (BPEL4WS 2 OWL-S Mapping Tool) as an im-
plementation of above mentioned mapping strategy. BPEL4WS 2 OWL-S Mapping

10

Tool can be used to map BPEL processes to complete OWL-S suite of ontologies. In
implementation the tool I have used the research work that has already been done
in this area by other research groups. For example, I have used OWL-S API [96] to
write the resulting OWL-S ontology for mapped OWL-S service. A component of
the tool (i.e. OWL-S Mapper) uses OWL-S API for writing resulting OWL-S ser-
vices. Since, OWL-S API uses Jena reasoner [9] for reasoning the mapped OWL-S
ontology therefore, I have also used the Jena reasoner as part of my implementation.
I have also explored (as discussed in Section 1.4) and criticized some initial work
done by other research groups in this area. In our work [20, 22, 21] I have pointed
out limitations and drawbacks of previous work done by other research groups in
this area and have shown how our work provide a more consistent and practical
approach. Chapter 6 discusses the implementation and architecture of the tool in
detail.

• Fifth, in Chapter 7, I provide an evaluation of proposed approach and its proto-
typical implementation. In this chapter I describe that how the approach presented
in this thesis addresses syntactical limitations of process modeling language (i.e.
BPEL) that have pointed out in Section 1.2 and enable existing business processes
for semantic based composition editing, modeling and for dynamically discovering,
invoking and composing them on the basis of matching semantics. In Chapter 8 I
point out some limitations and give future directions to make this work more useful
for SWS and process modeling communities.

1.6 Thesis Outline

This thesis describes the architecture and framework for dynamic composition of business
processes as SWSs. A theoretical approach and its prototypical implementation have
been developed to shift existing business processes to SWSs rather than to build them
in a semantic enabled environment from scratch. Figure 1.3 describes map of this thesis.
An overview of chapters of this thesis is as under:

Chapter 2 describes the state of the art in the area of Web service, semantic Web, SWS
and process modeling. This chapter also includes some literature about Web service
standards and SWS languages.

Chapter 3 analyzes existing approaches for SWS composition and highlights some issues
that need to be addressed for dynamic and automated composition of Web services.
To address these SWS composition issues new architectural approach and framework
has been described in Chapter 3.

Chapter 4 describes mapping constraints that can be used to establish correspondence
between syntax based (BPEL processes) and semantic based composition of Web
services (OWL-S composite services).

Chapter 5 presents mapping specifications and algorithms that can be used to translate
BPEL process descriptions to OWL-S suite of ontologies.

11

Chapter 6 describes the tool (BPEL4WS2OWL-S Mapping Tool) developed on the basis
of architectural concepts and mapping specifications discussed in previous Chapters
4. This chapter also describes the architecture of the implemented tool in detail.

Chapter 7 provides an evaluation of the proposed work by implementing it in a sample
use case scenario.

Chapter 8 concludes and describes future directions for my work.

12

Figure 1.3: Overview of this document.

13

14

Chapter 2

Semantic Web Service: State of
The Art

In this chapter I describe state of the art in the area of Web services, semantic Web, SWSs
and business process modeling. This chapter does not aim to provide complete description
of these technologies (as specifications of these technologies provide their detailed technical
descriptions) but to describe basic concepts, introduce necessary terminologies and to
provide technical overview of important technologies that are major part of this work.

2.1 Introduction

Investigating capabilities and limitations of Web services, SWSs and SWS languages
that can be used to overcome syntactical limitations of process modeling languages (e.g.
BPEL) was a preliminary step of my research efforts. For this purpose I inquire in de-
tail capabilities of Web service with its related standards (i.e. WSDL [31], SOAP [58]
and UDDI [41]) and Web service working architecture (i.e. Service Oriented Architecture
(SOA) [30, 49]). I argue that with semantic enhancements in Web service, semantic en-
hancements in Web service related machinery (e.g. service requester, service provider and
service registry) are also needed. Also, the approach followed by traditional 3-tier applica-
tion integration architecture is not enough for integration and composition of semantically
enriched services. I also describe that how different workflow modeling languages (e.g.
BPEL) can be used to model business processes as compositions of multiple services and
what are limitations of such syntax based compositions of Web services. Then I describe
the vision of the semantic Web and provide a short overview of semantic Web languages
(e.g. RDF [64], RDF-S [33] and OWL [73]). I provide some technical details about se-
mantic Web language (i.e. Web Ontology Language (OWL)) and how OWL ontologies
can be used to provide machine understandable meanings of data. I also describe that
how SWS community makes use of semantic Web language (i.e. OWL) to provide ma-
chine understandable meanings of Web services. I provide short technical descriptions
of SWS languages (e.g. OWL-S, WSDL-S, WSMO) and compare them with respect to

15

their semantic and workflow modeling capabilities. By analyzing and comparing existing
SWS languages I argue that semantic and process modeling capabilities of OWL-S are
much batter as compare to other SWS languages and it can be used to address semantic
limitations of traditional process modeling languages (e.g. BPEL). Understanding the
terms and technologies described in this chapter will help to better understand the work
discussed in remaining chapters of this thesis.

The remaining chapter is organized as follows: Section 2.2 describes Web service tech-
nology and highlights its capabilities and limitations. SOA and semantic enhancements in
SOA are discussed in Section 2.3. Section 2.4 describes workflow modeling and standard
workflow modeling language (i.e. BPEL). Semantic Web and semantic Web languages
that can be used to provide machine understandable descriptions of data have been dis-
cussed in Section 2.5. Section 2.6 describes emerging SWS languages and provides a
comparison of capabilities and limitations of these languages. Section 2.7 describes AI
planning for automated composition of semantically enriched Web services. Section 2.8
summarizes this chapter.

2.2 Web Service

Web services are being used to develop applications as reusable services (Web Services)
due to number of benefits of Web service technology. IBM encloses capabilities of Web
services by defining it as:

Web Services are self-contained, modular applications, accessible via the Web through
open standard languages, which provide a set of functionalities to businesses or individu-
als [61].

According to W3C definition of Web services:

Web services provide a standard means of interoperating between different software
applications, running on a variety of platforms and/or frameworks. Web services are
characterized by their great interoperability and extensibility, as well as their machine-
processable descriptions thanks to the use of XML. They can be combined in a loosely
coupled way in order to achieve complex operations. Programs providing simple ser-
vices can interact with each other in order to deliver sophisticated added-value services [5].

W3C definition adds more to Web services capabilities highlighting it as standard
means of interoperating between different software applications, running on a variety of
platforms (platform independent), interoperable and extensible. The work discussed in
[6] describes a number of definitions for Web services provided by different IT experts
and industrial partners (e.g. IBM, Intel, Microsoft, SUN etc.). Generally describing, the
following capabilities make Web services an efficient business applications development
and integration technology:

Self-contained: A Web service is a complete set of functionalities. An application when
published as a Web service, provides APIs that can be used to avail its functionality

16

by sending and receiving appropriate messages. A Web service in itself can be used
to perform a specific task supported by that service. In some cases, Web services
need to be composed with other services to provide a combine functionality that a
single Web service can not perform (as discussed in Section 2.4).

Interoperability: Web service provides interoperability between applications as well as
big vendors. Broad vendor agreement on standards and proven interoperability have
set Web services apart from integration technologies of the past [95]. Interoperability
feature of Web services make it most suitable technology to develop integrated
applications.

Platform Independent: Platform independence is important achievement of Web ser-
vice technology. Applications developed on any platform can be published and
invoked as a service on any other platform. Traditional component development
technologies (e.g. COM [1], DCOM [2], CORBA [8] etc.) do not provide with
such platform independence. A COM component developed on windows can only
be used on windows platform. Web services technology overcomes such platform
dependence.

Loosely Coupled: Different technologies (e.g. COM, DCOM, CORBA etc.) were
introduced to develop software system as components and modules. The whole
software application is combination of these components and modules which are
tightly dependent and coupled with each other. Web service as compare to these
technology is self-contained and loosely coupled. Emerging semantic Web service
technologies aim at developing more dynamic and loosely coupled services that can
be dynamically discovered, invoked and composed.

Standard Languages: Another important success factor for Web service is that it
is described by using XML [32] based language (i.e. Web Services Description
Language (WSDL)). WSDL being XML documents inherits the powers of XML
(e.g. flexibility, extensibility etc.). Also, Web services use SOAP as message ex-
change paradigm and can also be used to create complex interaction patterns (e.g
request/response, request/multiple responses etc.).

Universally Accessible: Web services are universally accessible. We can develop ap-
plications as services, publish them, discover them and invoke them. Any service
provider can develop a service and publish it on global network (possibly some
UDDI registry). The provider of the service himself and other business partners
can discover and invoke a Web service on defined address regardless of the platform
and framework on which Web service was developed and on which it is being used.

Above discussed Web service capabilities played an important role in the success and
rapid adoption of Web services. With this rapid adaption of Web services different issues
like 1) discovering required services 2) composing Web services to perform a complex
task that a single Web service alone can not perform 3) describing Web services in com-
puter understandable way so that Web services can be dynamically discovered, invoked
and composed by computer agents 4) development of new semantic based architecture

17

and frameworks for semantic based integration and composition of SWSs raised. To
address these issues different workflow modeling, semantic Web and semantic Web ser-
vice languages were developed and are under continuous development. Figure 2.1 gives an
overview of the evolution and relation between these syntax and semantic based languages
and we discuss them in coming sections in detail.

Figure 2.1: Evolution and relation between Web service, workflow, semantic Web and
semantic Web service languages.

2.3 Semantic Service Oriented Architecture

Service Oriented Architecture (SOA) [30, 49] is working architecture for Web services and
has three participants (i.e. service requester, service provider and service registry). A
service provider can develop applications on any platform and in any language and can
export them as WSDL services. These WSDL services can be registered on Web service
registries (e.g. UDDI registries). A service requester can search for a Web service in Web
service registries by using key word based searching. After discovering a required service
the service requester can directly interact with the service to utilize its functionality.
Limitations of current SOA and service registries are that they support only to publish
syntax based WSDL services and required services can be discovered manually on the
basis of keyword based searching. Semantic enhancements in Web service resulted in
some efforts to semantically enrich Web service related machinery (e.g. semantically
enriched Web service registries [108]) so that SWSs can be published and dynamically
discovered and composed by computer agents on the basis of matching semantics rather
than to find a service manually.

Adding semantics in SOA aims at providing shared meaning of business services within
an organization and probably across the organizational boundaries. Traditional SOA has
three participants- Service Provider, Service Requester and Service Registry and semantic
enhancements improve the role of these participants of SOA as:

• SWS Provider

18

• SWS Requester

• SWS Registry

SWS provider can develop and advertise a Web service that provides its machine un-
derstandable meaning. Using a SWS language can provide such machine understandable
description of Web services. Three major candidates for SWS standards are OWL-S,
WSDL-S and WSMO (as shown in Figure 2.2). The SWS provider annotates services
with domain ontologies to provide shared meaning of their Web service functionality by
using any of these languages. Publishing SWS supposes that the service registry sup-
ports such SWS advertisements. The requester of a WS is interested in finding a service
that fulfills his functional and non-functional requirements. A requester can find a service
manually or can define a Web service request annotated with domain ontologies to provide
request semantics (e.g. OWL-S Profile ontology). Such semantic requests can be used by
computer agents to dynamically find required services (e.g. [102] describes an approach
to annotate and discover web services by matching semantics). The work discussed in
[63, 66, 69] describe some approaches to automatically locate and discover Web services.
Current UDDI structure supports only key word based searching of required services.
Such keyword based searching is inefficient and not precise because it finds those services
also which are not offering the required functionality. Semantic enhancements in service
registries demand more efficient mechanism to discover required services on the basis of
matching semantics. Locating required services efficiently (semantically) is required by
the semantic enhancements in the service registries. A good work has been done and is
continuously improving the semantic base discovery of Web service by improving search
algorithms [35] and enhancing the registry architecture [79, 16, 108].

Figure 2.2: Semantics based Service Oriented Architecture.

19

2.4 Workflow Modeling

Different workflow modeling languages like Web Services Flow Language (WSFL) [68],
MS XLANG [59] and Business Process Execution Language for Web services (BPEL4WS,
shortly known as (BPEL)) [42] have been developed to define workflows. IBM’s WSFL
addresses workflow on two levels: 1) it takes a directed-graph model approach for defining
and executing business processes 2) it defines a public interfaces that allows business
processes to advertise as Web services [88]. The XLANG is an XML [32] based business
process language that can be used to orchestrate Web services. An XLANG service
description is a WSDL service description with an extension element that describes the
behavior of the service as a part of a business process [7]. MS XLANG is a language
that is used in MS BizTalk Server (which is Microsoft’s business process modeling tool).
However, the business processes modeled in MS BizTalk server can easily be imported
and exported to BPEL.

BPEL4WS. BPEL is a mature business process modeling language and is the industry
wide accepted standard for modeling business processes as Web services compositions.
A BPEL process consumes Web services operations to perform a specific business task
by defining control flow and data flow between these Web services operations. A BPEL
process can itself be exported as a Web service. BPEL supports the implementation of
any kind of business process in a very natural manner and has gradually become the basis
of a standard for Web service description and composition [88]. Several characteristics
of BPEL make it the language of choice for modeling business processes. For example,
BPEL is a language which combines workflow capabilities of IBM WSFL and structural
constructs of MS XLANG. Most of process modeling tools (e.g. MS BizTalk Server, IBM
WebSphere, SAP NetWeaver etc.) provide support for importing and exporting BPEL
processes from one framework to other. In presence of all these capabilities it has many
shortcomings resulting in limitations for seamless interoperability of business processes. A
BPEL process being a syntax based composition of Web services fails even if a single Web
service with in composition is not available or changed with the passage of time. Also,
when these BPEL processes are exported as services they expose syntactical interfaces
which no more enable them to be dynamically discovered, invoked and composed by other
semantic enabled systems. These limitations can be addressed successfully by getting
across semantic gap between process modeling languages and upcoming semantic Web
and SWS languages (as shown in Figure 2.1 and discussed in remaining chapters of this
thesis).

2.5 The Semantic Web

The semantic Web [87, 28] is an extension to the current Web (WWW) to present more
meaningful data that is easily and efficiently processable and understandable for humans
as well as for machines. It aims at providing common formats for exchanging data and
languages for describing relations between data objects.

Different semantic Web languages (e.g. RDF [64], RDF-S [33] and OWL [73, 18])
have been developed to present information as resources on the Web. Uniform Resource

20

Identifiers (URIs) [27] can be used to uniquely identify entities as resources on the Web.
For example, we can assign URI to a student, a university, an address etc. and rela-
tion (as shown in Figure 2.3) between these resources can be defined by using semantic
Web languages for better and efficient processing of information by human and computer
agents.

Figure 2.3: Relational semantics defined with OWL ontology.

Among the bundle of semantic Web languages available as W3C recommendations,
Resource Description Framework (RDF) was developed to provide a standard way to
model, describe, and exchange information about resources. Providing information as
RDF triples was not enough for the vision of the semantic Web to become true. The
further development resulted in Resource Description Framework Schema (RDF-S). RDF-
S is semantic extension to RDF, as it enhances the information description capabilities
of RDF by describing the groups of related resources and relationship between these
resources. Lack of information expression capabilities of RDF-S (e.g. defining properties
of properties, necessary and sufficient conditions for class membership, equivalence or
disjointness of class etc.) resulted in more expressing semantic Web language (i.e. Web
Ontology Language (OWL)). OWL is intended to be used when the information contained
in documents need to be processed by applications, as opposed to the situations where the
contents only need to be presented to humans [11]. Figure 2.3 (taken from Evren Sirin’s
talk ”Using Web Ontologies for Web Service Composition” [97]) gives a very interesting

21

and easy to understand example of an OWL ontology. This sample ontology defines
the relation of a student with his geographical location, university, course etc. This
information can be used by computer agents for reasoning and finding suitable student
records.

2.6 Emerging Semantic Web Service Languages

The semantic Web introduced the vision of providing machine understandable data and
OWL emerged as a language to provide universal meaning to data over the Web. Web
services and SWSs communities used the semantic Web vision and semantic capabilities
of OWL to make Web services machine understandable for the purpose of dynamic and
automated discovery, invocation and composition. Currently different efforts are going
on to develop SWS language (e.g. WSDL-S, WSMO and OWL-S). All of these SWS
languages working groups are using OWL to provide domain specific semantics of Web
services even though their approaches of using OWL ontologies differ from each other.

2.6.1 WSDL-S

WSDL-S is a SWS development language that is jointly developed by the University of
Georgia and IBM. The WSDL-S approach is to enhance WSDL tags to provide machine
understandable meanings of services. For example, WSDL-S extends WSDL operation
and message tags by annotating them with domain ontologies to provide Web service
semantics (as shown in Example 3). WSDL-S approach helps not only to discover a right
service but also the right operation among multiple operations supported by the same
service. Instead of using XML schema [104] of complex input and output messages of
Web service operations, these messages are mapped to domain ontological concepts to
provide their shared meaning.

Example 3. WSDL-S extensions to WSDL message tag.

1 <wsdl:messagename="TranslatorRequest">
2 <wsdl:part name="in0" type="tns1:inputLanguage"
3 LSDISExt:onto-concept="LSDISOnt:SupportedLanguage"/>
4 </wsdl:message>

In addition with extending WSDL, the WSDL-S also adds new tags (i.e. LSDIS-
Ext:precondition and LSDISExt:effect) to WSDL specifications. These tags are used to
describe pre-conditions and effects of a Web service operations. WSDL-S does not provide
any mechanism to model the composition of SWSs but extends and uses BPEL for this
purpose. It means, WSDL-S describes semantically, what does the service provide but
not how to use the service. Figure 2.4 summarizes WSDL-S approach to semantically de-
scribe Web service capabilities. Also, WSDL-S concepts are being feeded to the upcoming
SWS language (i.e. Semantic Annotation for WSDL (SAWSDL) [50]) as a joint effort of
WSDL-S and WSMO working groups. Since, WSDL-S concepts are being implemented
as major of the SAWSDL approach therefore, we do not discuss it separately.

22

Figure 2.4: Overview of WSDL-S approach.

2.6.2 WSMO

Web Service Modeling ontology (WSMO) is part of ongoing research to achieve dynamic,
scalable and cost-effective infrastructure for transaction and collaboration of business ser-
vices. It provides a conceptual framework and formal language for describing Web services
semantically to facilitate dynamic and automated discovery, invocation and composition
of services. Web Service Modeling Language (WSML) [44] is formal language used to
describe WSMO services. The Web Service Execution Environment (WSMX) [36] is exe-
cution environment for dynamic discovery, invocation and composition of WSMO services.
Like other SWS languages the WSMO also uses domain ontologies (OWL ontologies) to
provide domain specific semantics of Web services.

2.6.3 OWL-S

OWL-S is another language being developed to provide Web service semantics to facilitate
dynamic and automated discovery, invocation and composition of Web services. OWL-S
is suite of OWL ontologies (Profile, Process Model and Grounding ontologies) and each
of these ontologies play a specific role to dynamically perform discovery, invocation and
composition tasks. Profile ontology provides semantically enriched information about
Web service capabilities which helps to publish and discover a service dynamically on the
basis of matching semantics. Process Model ontology describes how to use a service and
can be used for modeling semantic based composition of multiple services. Grounding
ontology describes how to access a service. OWL-S uses OWL ontologies to provide
universally unique meaning of a service by annotating its inputs, outputs with domain
ontologies and by describing its pre-conditions and effects. Like a workflow language,
the Process Model ontology has very expressive capabilities to model the composition
of multiple services but based on their semantic descriptions. Two major reasons for
choosing OWL-S to semantically describe BPEL process models are 1) Profile ontology

23

Table 2.1: Comparison of SWS languages.
OWL-S WSMO WSDL-S

Language OWL WSML WSDL with
Extensions

Multiple Interfaces Supported Supported Not supported
Service Semantics Supported Supported Not Supported
Operational Semantics Not Supported Not Supported Supported
Composite Processes Supported Not Supported BPEL with

Extensions
Simple Process Supported Not Supported Not Supported
Invocation WSDL Grounding WSDL Grounding WSDL
Development Tool Available Available Available

of OWL-S service can be used to provide semantically enriched meaning of a process
as OWL-S service 2) Process Model ontology of OWL-S suite can be used to edit and
model composition of multiple SWSs (like a workflow language). Table 2.1 describes a
comparison of these SWSs languages.

2.7 AI Planning for Web Service Composition

Planning is about producing changes through actions [109]. The need for planning arises
naturally when an agent is interested in controlling the evolution of its environment.
Algorithmically, a planning problem has as input a set of possible courses of actions, a
predictive model for the underlying dynamics, and a performance measure for evaluating
the courses of action. While contributing to solve the problem of automatic Web services
composition, AI community has provided different solutions for automatic Web services
composition by using different AI planning techniques (e.g. Classical planning [45], HTN
planning [107], GOLOG [67] etc.) (I shall describe and evaluate some of these approaches
in Section 3.2).

Classical planning is useful in static environments, in which planner has complete
information about the problem and the surrounding world. A planner focuses on two
major issues: (1) modeling the actions and state change with actions (2) sequencing the
actions towards the planning goal.

Hierarchical problem solving method reduces the planning complexities by focusing
on one task at one time and ignoring others for the time being. A more sophisticated
method of hierarchical planning is Hierarchical Task Network planning (HTN) [107]. In
HTN planning a planning problem is organized into a set of tasks. A high level task
in HTN plan can be reduced to sub tasks until a planner reaches to a primitive task
that can be used to perform a single step operation by using the planning operator. The
HTN planning already has a very closer match with OWL-S. For example, the OWL-S
composite process can be mapped to HTN task that can be divided into sub-tasks and
HTN operators refer to OWL-S atomic processes that can be performed in a single step.

In addition with developing new languages and tools for Web services and SWSs,

24

new architectural approaches are also highly needed to shift existing legacy systems to
upcoming semantic based environment. According to the IBM definition of web services
architecture:

We believe that applications will be based on compositions of services discovered and
marshaled dynamically at runtime (just-in-time integration of services). Service (applica-
tion) integration becomes the innovation of the next generation of e-business, as business
move more their existing IT applications to the Web, taking advantage of e-portals and
e-marketplaces and leveraging new technologies, such as XML. The concept of Web ser-
vices, described here, is our view of what the next generation of e-business architectures
for the Web will look like [61].

In my research work I have also adopted a bottom-up approach to achieve business
process automation. For this purpose I present a new 4-tier SWS integration architecture
that addresses integration and composition issues of SWSs. Then I describe that how
business processes can be enriched semantically by mapping them from a syntax based
process modeling language (i.e. BPEL) to SWS language (i.e. OWL-S). The process
models mapped to OWL-S composite services describe composition of services on the
basis of matching semantics as well as semantically enriched interfaces of mapped OWL-
S services can be used for dynamic discovery, invocation and composition to achieve the
aim of business process automation as OWL-S services.

2.8 Summary

In this chapter I described state of the art in the area of Web service, semantic Web,
SWS and process modeling languages. I highlighted Web service capabilities (e.g. in-
teroperability, platform independence, loose coupling, standard languages etc.) which
resulted in rapid adoption of Web service in academia and industry. Some process mod-
eling languages (e.g. WSFL, MS XLANG and BPEL) that can be used to model business
processes as syntax based compositions of Web services have also been discussed. This
chapter described that current Web service architecture for publishing, discovering and
composing Web services on the basis of their syntactical interfaces is not enough and new
architectural approach is needed that addresses the syntactical limitations of Web service
architecture (Chapter 3 describes a new architectural approach that addresses semantic
based Web services composition and integration issues in detail).

Secondly, processes modeled by using traditional workflow modeling languages com-
pose Web services on the basis of syntactical information of WSDL services. When these
processes are exported as services they also expose syntactical interfaces which no more
enable business processes to be dynamically discovered, invoked and composed by other
semantic enabled systems. Syntactical limitations of process modeling languages (e.g.
BPEL) is key factor that needs to be addressed to achieve the goal of business process
automation as dynamic and automated composition of business processes as SWSs. For
this purpose different SWS languages (e.g. WSDL-S, WSMO and OWL-S) and process
modeling and semantic capabilities of these languages have been analyzed in this chapter.
Analysis of capabilities and limitations of these SWS languages shows that SWS language
(i.e. OWL-S) can be used to successfully address semantic limitations of process modeling
language (i.e. BPEL). The Process Model ontology of OWL-S suite can be used to model

25

the composition of Web services on the basis of matching semantics and Profile ontology
of OWL-S suite can be used to expose semantically enriched interfaces of BPEL pro-
cesses as OWL-S services. I have also discussed some AI planning techniques that can be
used for automatic composition of OWL-S services. This chapter concludes that semantic
enhancements in Web service architecture and efficient translation of business processes
(BPEL processes) to OWL-S services can help in business process automation by enabling
business processes for dynamic discovery, invocation and composition as OWL-S services.

26

Chapter 3

SWS Composition: Architecture
and Framework

In this chapter I present a new 4-tier architecture for integration of business processes as
SWSs compositions. The proposed 4-tier architecture is result of differentiation between
architectural components (services) and those components that interact with services
(orchestration). On the basis of 4-tier SWS integration and composition architecture an
integration life cycle and a framework for SWS integration and composition has been
presented. In this chapter I describe common architectural issues and problems that arise
when we try to translate the composition of Web services from a syntax based to seman-
tic based environment. I have adopted a bottom-up approach in this thesis therefore,
before describing in detail about shifting of business processes to SWSs I describe the
architectural and technical aspects needed for automation of business processes as SWSs
composition.

3.1 Introduction

In a SOA, interaction between service providers and service consumers takes place in a
loosely coupled way, where a service provider can also act as a service consumer. Web
services and its related standards like WSDL, SOAP, UDDI and Web service composition
languages (e.g BPEL) provide syntax based interaction and composition of Web services in
a loosely coupled way. SOA activities and semantic enhancements in SOA (as discussed
in Section 2.3) are needed for a common machine-to-machine communication between
services with in and across the enterprise boundaries. Guidelines like using at least basic
profile of WS-I standards, not publishing overloaded methods in Web services interfaces
and creating WSDL first, then implement the service (contract first) are initial steps for
reuse of services. But, guidelines in dynamic environment have to be monitored constantly
in order to adopt them. Semantic enhancements in Web services, proposed by different
research groups and composition of these services on the basis of matching semantics
has different barriers to interoperability (e.g. compatible information models, interaction

27

protocols etc.). Dynamically accessible semantic descriptions of service capabilities and
utilization protocols, based on shared semantic models published on the semantic Web, are
seen as a way to overcome these barriers, but they will require additional infrastructure
so that individual software agents can directly interpret published service descriptions
(which some times use unfamiliar ontologies) [34].

Dynamic composition of Web services is highly needed in the growing e-business world
for the purpose of business process automation as semantically enriched Web services
compositions. Composing Web services on the fly can efficiently affect the e-business
world both at B2C and B2B levels. For example consider the simple scenario of a B2C
interaction in which a client wants to order a pizza for delivery. In such a scenario
user has some specifications (e.g. pizza ingredients, specific geographical location to
deliver pizza, pizza rates etc.). To perform such a task a client has to manually discover
and execute required services one-by-one, which is not an efficient approach. Similarly,
B2B interactions in a distributive business environment involve prior agreements and
predefined standards between interacting partners. Such prior agreements at different
levels of integration can no more motivate efforts for business process automation.

Several current efforts (e.g. OWL-S, WSMO and WSDL-S) aim at providing Web ser-
vice semantics. In Section 2.6, I have already compared these SWS languages and argued
that OWL-S is most suitable SWS language that can be used to overcome syntactical
limitations of process modeling language (i.e. BPEL) by translating BPEL process de-
scriptions to OWL-S suite of ontologies so that these OWL-S services can be dynamically
discovered and composed on the basis of matching semantics. Different solutions, like
enhancing BPEL to create dynamic composition or using AI planning to automate the
composition process of required services have been proposed. Most of the methods for
business process automation as SWSs composition fall into one of the following two cate-
gories: methods based on pre-defined workflow model and methods based on AI planning.
The first method uses workflow techniques and second approach is based on AI planning
techniques. Both of these methods have their own composition approaches. The workflow
method is more meaningful and useful in situations where problem model (e.g. BPEL
process model) is already defined. In such a method dynamic composition involves dis-
covery and binding of required services within Web services composition. On the other
hand, AI planning method is more suitable in situations where requester has no process
model but has a set of constraints and preferences. On the basis of this set of constraints
and preferences, final composition can be generated automatically by the program [85].
In this chapter I provide a comparative study of some existing approaches for dynamic
and automated composition of Web services and argue that due to lack of semantic sup-
port in Web service integration architectures and frameworks, these approaches result in
limitations for dynamic and automated composition of SWSs.

As a solution to these problems, I propose a 4-tier SWS integration and composition
architecture that provide a new architectural approach to address interoperability and
compatibility issues from semantic based Web services composition perspective. On the
basis of 4-tier architecture I also describe a SWS integration life cycle and a framework
for dynamic and automated composition of business processes when they are translated
to SWSs (e.g. OWL-S composite services).

The remaining chapter is organized as follows: Different SWS composition approaches

28

have been discussed in Section 3.2. In Section 3.3 I highlight capabilities and limitations
of these approaches. As a step to overcome limitations of existing SWS composition
approaches a new 4-tier architecture for Web services integration in semantic service
oriented paradigm has been presented in Section 3.4. On the basis 4-tier architecture
I propose a SWS integration life cycle that has been discussed in Section 3.5. On top
of these architectural concepts I present a novel framework for dynamic and automated
composition of business processes as SWSs in Section 3.6. Section 3.7 provides a summary
of this chapter.

3.2 SWS Composition Approaches

Dynamic and automated composition by means of Web service semantics is most impor-
tant and promising task for SWS community to enable business process automation as
SWS composition (as shown in Figure 3.1). Different approaches form both workflow and
AI communities have been presented for the purpose of SWS composition and in this
section I describe some of these existing approaches.

Figure 3.1: Enabling business processes for dynamic and automated discovery, invocation
and composition by mapping them to OWL-S SWSs.

3.2.1 A Bottom-Up Approach

The work discussed in [70] presents a bottom-up approach by integrating the semantic
Web technology into Web service technology while considering BPEL as composition
of Web services. Idea behind this approach is to add semantics in BPEL that provide
machine understandable descriptions of required services with in process and extending

29

workflow execution engine (BPWS4J) [43] to realize these semantic descriptions. With
these semantic descriptions the bottom-up approach uses Semantic Discovery Service
(SDS) to dynamically discover a required service on the basis of matching semantics
and bind it with in composition. This approach makes use of DAML Query Language
(DQL) to query these repositories of DAML-S Profiles. JTP (Java Theorem Prover)
(DAML-S reasoner) is used to find matching service profiles and to compose these services
dynamically. In case, if a single service does not meet a service requirements, the SDS
uses a recursive back-chaining algorithm to determine a sequence of service invocations or
service chain, which takes input provided by the BPWS4J and returns output required by
the BPWS4J. However, the system efficiency goes down as the number of service Profiles
increases in service chain. One major limitation of this approach is that it doesn’t consider
pre and post conditions for discovery and composition purposes. Also, chaining multiple
services to get required output, in case of long chaining process, affects the efficiency of
proposed approach.

3.2.2 METEOR-S Approach

In the METEOR-S project [14], the working group has developed a tool for dynamic
composition of Web services. The METEOR-S tool (METEOR-S process designer) allows
process designers to design processes on the basis of business and process constraints.
Idea behind Web Services Composition Tool is to write required service specifications as
an abstract process within BPEL process model and to discover services whose Profile
matches to defined abstract process. Once required services are discovered, candidate
service is selected on the basis of process and business constraints. The process designer
uses BPEL for process modeling. A service template is created by using functional as well
as QoS specifications of all operations of a Web service in a process [14]. Major drawback
of this approach is that end user has to manually select a service for composition among
bundle of dynamically discovered matching services.

3.2.3 Template Based Composition

In the work discussed in [100], Evren Sirin uses workflow templates to write abstract ac-
tivities. These abstract activities can be used to describe required services. On the basis
of these activities specifications required services can be discovered to create executable
workflows. This approach focuses on value of adding preferences in templates so that
services can be ranked to find most suitable one among a bundle of discovered services.
Evren Sirin proposes the use of semantic Web technology (OWL) for writing such tem-
plates, which allow reasoning for flexible and more consistent match making of required
services. This approach focuses on extending the OWL-S process ontology by proposing
the addition of abstract process. Evren Sirin proposed that process ontology should have
an abstract process that can be used to refer to the Profile ontology of an OWL-S service
with other specifications that can be used to rank and find best suitable service. The
proposed abstract process, unlike to atomic process is not connected to specific Profile
or Grounding and unlike to simple processes is not connected to any existing process.
This approach implements use of AI planning approach (i.e. Hierarchical Task Network

30

(HTN) planning) with its extended formalism as HTN-Description Logic (HTN-DL) for
automatic Web services composition.

3.2.4 Semi-automatic Composition

A semi-automatic composition approach and a prototype SWSs composition tool have
been discussed in [98]. The tool discovers semantically matching services from available
services repository. These discovered services are then filtered and presented at each step
of Web services composition process. End user selects a required service among these
available services for the purpose of composition. The service composition tool consists of
two components (i.e. inference engine and a composer). Inference engine stores informa-
tion about all available services in its knowledge base and is capable of finding matching
services. Composer is user interface that handles communication between human opera-
tor and inference engine. The inference engine discovers matching services on the basis of
matching semantics and filters most suitable services on the basis of functional and non-
functional attributes. The composition tool doesn’t allow the end user to define control
flow between discovered services. Also users are not able to define condition statements
to have some conditional results of a composite process.

3.2.5 WSMO Composition Approach

WSMO community has also developed a tool [86] for dynamic composition of Web services
and has integrated it with IRS-III [46]. IRS-III is a framework to develop, publish,
compose and execute SWSs developed on WSMO specifications. The composition tool
allows users to select goals, mediators and control flow operators to define control flow
between components. As already discussed that the composition tool is integrated in IRS-
III server therefore composition process starts by selecting a composition goal from the
list of available goals defined in the IRS-III server. Data flow between these goals can be
defined by specifying the data source as input of goal and the data destination as an output
of the goal. Also the tool allows to define values of inputs and outputs of goals at design
time of composition. Type mismatch between inputs and outputs of goals can be managed
by using mediators. Mediators map and perform transformation between goals. Defining
XSL Transformations can support such a data mapping between messages of different
types in OWL-S. WSMO composition tool supports semi-automatic composition of Web
services by helping users during the process of designing the composition. On the basis of
abstractly defined service requirements, services are discovered and invoked dynamically.
Non-functional expectations on a service composition are expressions of human will, and
consequently should be given by the users instead of letting composition engines to guess
or randomly assign the right service [86]. The WSMO community aims at improving the
semi-automatic composition process by supporting the discovery and composition on the
basis of non-functional semantics.

3.2.6 Some Other Composition Approaches

Planning for Web services Composition by Using SHOP2. The work discussed
in [101] describes how an AI planning system (i.e. SHOP2 [3]) can be used with

31

DAML-S (OWL-S) Web service descriptions to automatically compose Web ser-
vices. This approach gives partial support for composing services on the basis of
their matching functional and non-functional semantics. [101] Does not support
the creation of a composite process with all OWL-S supported control constructs
(e.g. this approach does not support synchronization between process components
by implementing the use of OWL-S Split-Join control construct).

SWORD. The method reported in [83] provides a set of tools for composition of a
class of Web services. The SWORD implements use of rule-based expert system
that determines possibility of automatic creation of composite service from existing
services. In case of such possibility a plan is created. Execution of such a plan
generates composite service. This approach is limited with respect to selecting Web
services for composition just on the basis of input and output and does not handle
services that have certain pre-conditions or effects.

Plængine. Plængine [75] is a software system that supports planning for service compo-
sition and service enactment. The Plængine uses integrated meta-model approach
to plan for Web services composition. The Plængine consists of two components:
a composer and an enactor. The composer is responsible to generate composition
with the help of its subcomponent ComposerThread that uses search-planning al-
gorithm to perform composition. The enactor is responsible for scheduling and
execution of individual services within a composition. This work focuses on over-
coming limitations (e.g. handling exceptions, sophisticated support for control flows
and extending architecture of meta-models).

Web Services Composition and Execution Framework. The framework discussed
in [53] provides mechanism and tools for visual orchestration of semantically well-
defined building blocks and semantic invocation of services that match to the user
specifications. The dynamic composition approach presented in this work uses pre-
defined flow of complex service extended with abstract functional building blocks.
These abstract building blocks define requirements for a service to perform a spe-
cific task. The best matching service is discovered and invoked at execution time.
A part of this work has been discussed in [79] which describes how to handle BPEL
limitations of static Web service binding with late binding by using the idea of
”generic Web service proxies”. This work presents idea of service ontology based
semi-automatically generated activity components, which can be used and manipu-
lated by tools (e.g. for visual modelling of complex services, in deployment phase, in
execution phase etc.). Framework proposed in [53] does not fully support dynamic
composition on the basis of both functional and non-functional service semantics,
which reduces efficiency of proposed framework.

3.3 Limitations of Current Composition Approaches

In this section I highlight major issues that need to be addressed to automate interaction
between business processes by translating them to SWSs and composing these services

32

dynamically on the basis of matching semantics. I also summarize above discussed com-
position approaches by compiling them with respect to their level of support for these
composition aspects. Some major issues that help in evaluating existing approaches are
as under:

Service Discovery and Selection on the Basis of matching Semantics. This is-
sue ddresses the problem of discovering a service on the basis of matching functional
semantics (e.g. input, output, pre and post-conditions) and non-functional seman-
tics (e.g. service response time, geographical location etc.). It is also concerned with
selection of a single service from the bundle of semantically discovered services.

Service Binding & Referencing. In case of a workflow language as Web services com-
position, Service Binding & Referencing describes that how a selected service is
bound in final composition and in case of an AI planning approach how a service is
referred in final composition generated by an AI plan.

Composition Strategy. This issue addresses the approach used for composition of se-
mantically enriched services. For example, in case of a workflow language as Web
services composition, composition strategy describes that either the composition is
dynamic or not. In case of AI planning composition strategy describes that either
the final composition is generated automatically (automatic) or semi-automatically
(semi-automatic).

Execution. Focuses on execution support in the proposed work for the execution of final
composition.

Semantic Web Technology. Describes the approach used to add semantics to Web
service technology and SWS language used to write semantic based Web service
request (e.g. OWL-S, WSDL-S or WSMO etc.).

Table 3.1 summarizes capabilities and limitations of above discussed approaches with
respect to these (as discussed above) SWS composition issues. Table 3.1 shows that none
of the above discussed approaches addresses all these composition issues. For example,
in bottom-up approach (discussed in Section 3.2.1) QoS semantics, pre and post condi-
tions of services play no role in discovery and composition mechanism. In this approach
process designer handles pre and post conditions at design time. Similarly, the approach
discussed in Section 3.2.2 also defines the basic workflow in BPEL and dynamically dis-
covered services are binded in final process at design time. Semi-automatic composition
approach discussed in Section 3.2.4 involves human interaction at each step of service
composition. But this approach discovers and filters available services on the basis of
matching functional and non-functional semantics.

To enable collaboration between business processes (e.g. BPEL processes) in a dy-
namic and automated fashion by translating them to SWSs (e.g. OWL-S services), SWS
integration and composition approach should provide solution for above discussed issues.
With such an approach we can avoid different composition problems, for example, select-
ing and composing required services dynamically and at run time on the basis of both
matching functional and non-functional semantics to avoid problems that occur when

33

Table 3.1: Comparison of some existing dynamic and automated Web service composition
approaches.

Composition
Approach

Service Discovery Service Selection Service
Binding
& Refer-
encing

Composi-
tion
Strategy

Execution SWS
Lan-
guage

Functional
Semantics

Non-
Functional
Semantics

Functional
Semantics

Non-
Functional
Semantics

Bottom-Up
Approach

Partial No Partial Yes Run-time Dynamic Yes OWL-S

METEOR-S Yes Partial Yes Partial Deployment
/Design
time

Dynamic Yes WSDL-S

Template
Based Com-
position

Partial Partial Partial Partial Dynamic Automatic Yes OWL-S

OWL-S
Composition
Approach

Yes Partial Yes Partial Dynamic Semi-
automatic

Yes OWL-S

WSMO Ap-
proach

Yes Partial Yes Partial Dynamic Semi-
Automatic

Yes WSMO

HTN Plan-
ning Using
SHOP2

Partial Partial Partial Partial Dynamic Automatic Yes OWL-S

SWORD Partial No Partial No Off-line/
Compo-
sition
time

Semi-
automatic

Yes Independent
of Stan-
dards

Plængine Yes No Yes No Dynamic Automatic Yes Integrated
Meta-
Model

Ontology
Derived
Activity
Components
Approach

Partial Partial Partial Partial Dynamic Dynamic Yes OWL-S

34

a single service within composition is not accessible, or when its functional and non-
functional semantics no longer match to the required service semantics. An architectural
approach which addresses issues like orchestrating, querying for required services and
composing them on the basis of matching semantics can be a positive step towards so-
lution. In next section (Section 3.4), I propose such an architectural approach that uses
semantically enriched interfacing between different layers of SWS integration architecture.

3.4 4-Tier Integration Architecture

As the Web becomes more semantic and applications become more agile need for an ad-
ditional architectural layer becomes more prevalent. This new architectural layer chore-
ographs the business rules and orchestrates services by using ontologies. Figure 3.2 out-
lines how the choreography and orchestration layer(CO-layer), and services layer in the
”new” 4-tier architecture evolved from the business logic layer of the current 3-tier appli-
cation integration architecture. This new architectural layer is derived from the natural
evolution of the business logic layer. The four layers in the proposed 4-tier integration
architecture cooperate in order to provide overall functionality. The invocation relation-
ship between four layers is strict top-down invocation relationship. That is, components
in upper layers invoke components in lower layers in order to accomplish their function-
ality and lower layers cannot invoke components in upper layers. This avoids circular
invocation dependencies and ensures that the functionality separation is followed [35].

Figure 3.2: 4-tier semantic Web services integration architecture.

The 4-tier SWS integration architecture consists of the following four layers (as shown
in Figure 3.2):

• Presentation Layer

• Choreography and Orchestration Layer (Business Logic Layer)

35

• Services Layer (Business Logic Layer)

• Persistence Layer

Presentation layer provides interface to interact with integrated applications. Different
interfaces can be provided to meet different integration requirements. For example, XML
provides a cross-platform standard for creating interfaces. It enables better reuse of user
interfaces - presentation layer - in complex integration scenarios. Also, it can bypass some
WSDL complexities when annotated with domain ontologies to provide data semantics.
Different XML messages and input/output data creates the interface between presentation
layer and business logic layer. Execution of business logic (process) is closely dependent
on these messages and data bridging the co-ordination between presentation layer and
business logic layer (CO-layer and services layer). The resulted integrated application
(service) can also present its interface (XML interface) for further co-operation with other
services and applications. This interface can also be annotated with ontologies. Such a
semantic interface helps in further dynamic and automated discovery, composition and
invocation of these integrated services by semantic enabled systems.

Business logic layer contains the components that implement the integration func-
tionality. In traditional business application integration scenarios, business logic layer
define the control and data flow between integrated applications and implement the busi-
ness rules and business logic. Components in business logic layer interact with preceding
layer components by using some application adapters, data transport protocols and or
formats (as shown in Figure 3.2). As long as business applications development trend has
changed to business service development (extended with domain specific semantics) and
the business logic layer comes in to focus, we begin to differentiate between architectural
components that provide services and those components that either orchestrate services
(service composition on the basis of matching semantics and aggregation) or choreograph
them (business rules and workflow). This difference between components that realize
specific use-cases (services) and components that organize those use-cases into dynamic
business rules (choreography and orchestration) is emphasized by splitting the business
logic layer in two. These two layers jointly play the same role as business logic layer (i.e.
event management, process management, data management) and managing the control
and data flow between services. When talking about integration architecture for integra-
tion and composition of services which expose semantically enriched interfaces, I describe
the role of CO-layer and services layer individually in the whole SWS integration and
composition architecture.

The CO-layer choreographs and orchestrates services in services layer with business
rules and semantics. This is agile layer of the 4-tier software architecture model. This
layer is required to be dynamic - to meet the changing requirements of the business
enterprise. CO-layer also needs to be adaptable as the enterprise grows through merger
and acquisitions. Business logic and business rules can be implemented here by separating
them from the underlying infrastructure of the system’s operation. These rules can be
implemented in some structure language. Even though CO-layer and services layer are
emerged from business logic layer but components in these layers coordinate in such a way
that they are invoked precisely and in the right order by sending and receiving messages
between CO-layer and service layer components. Chapter 4 describes it in detail that

36

when BPEL process is mapped to OWL-S service individual processes with in a composite
process are invoked in right order defined with in mapped composite process by sending
and receiving semantically enriched messages which are annotated with domain ontologies.

Services layer is not new, for many it remains equivalent to the business logic layer and
contains a business rule service. The services layer is the realization of business processes
in terms of discrete service definitions. This layer is inherently static as services are tightly
coupled to their implementations. However, when consistently defined in terms of IOPE
with domain ontologies, services begin to reveal patterns of behavior that can be modeled
and orchestrated. Enhancing the services layer with semantic support no more keep it
static, as, required services can be defined here semantically and can be discovered and
composed dynamically on the basis of matching functional and not-functional semantics
(e.g. as discussed in Sections 3.2.2 and 3.2.3).

As discussed above that the proposed integration architecture is a top down approach
in which components in upper layer can invoke components in lower layer therefore,
business logic layer can be interfaced with persistence layer by using some application
adapters, protocols and data transport formats to exchange messages. Splitting the busi-
ness logic layer in to CO-layer and services layer results in an additional interface to
query for SWSs and getting its response. Reliability of the application integration ar-
chitecture is intimately dependent on persistence components (persistence layer). In the
whole integration architecture, database systems are used to store and to manage data.
The data includes the messages, events, processes and configuration data. One possibil-
ity is to store all the information in some database but file systems can also be used to
store data in files as part of persistence layer. The newly emerged layer (i.e. services
layer) in the integration architecture added an additional component to persistence layer
(i.e. SWS registry). The CO-layer, services layer and persistence layer co-ordinate by
sending query for a required SWS (SWS request) and getting its response (semantic Web
service response). The 4-tier SWSs integration architecture supports integration of se-
mantically enriched Web services but it is not enough for dynamic, semi-automatic and
automatic annotation, advertisement, discovery, selection, composition and execution of
inter-organization business logic, making the Internet become a global common platform
where organizations and individuals communicate among each other to carry out various
commercial activities and to provide value-added services [37]. For these purposes SWS
integration and composition life cycle is presented in next section.

3.5 Integration and Composition Life Cycle

SWS integration and composition life cycle (as shown in Figure 3.3) describes an engineer-
ing and development cycle to fully harness and sharpen the power of business processes as
SWSs. The proposed life cycle is based on a top down approach starting from modeling
business processes (composite services) as Web services compositions and ending with
their execution. It consist of multiple modules including developing business processes,
adding technical and business constraints to processes, annotating the composition work-
flow with domain ontologies to prepare semantic based service requests in the workflow
and deploying and executing the final process (composite service). Each phase of the SWS
integration life cycle is responsible to perform a specific task. I herein describe functional

37

aspects of these phases individually.

Business Process Modeling. Business departments define how a single process steps
are combined with each other and control and data flow between these process steps
- business logic can be defined. In fact, they do not know technical aspects and
implementation of these processes and how Web services work, but they are able to
design and model the business logic. Different methods like Value Chain Diagrams
[57], Event Driven Process Chains [74, 52] and UML Activity Diagrams [52] can
be used to model business processes. These methodologies are more useful for
business experts to describe business logic as business processes that are annotated
with management requirements. Deliverables of such business analysis and design
processes are not readable for computers. They need some technical descriptions
(e.g. BPEL process or OWL-S Process Model descriptions) to become readable and
executable by machines.

Figure 3.3: SWS integration and composition life cycle.

Development. Once defined, business processes are developed as a composition of Web
services with their technical implementation. Technical descriptions of business pro-
cesses make them machine readable for the purpose of deployment and execution.
Machine-readable descriptions of processes can also refer to some existing services
available in service registry to perform a specific part of the total business goal.
Business constraints (e.g. business rules, data exchange format, communication

38

protocols etc.) are applied to the business process to meet management aspects
of integration process. Even though technical descriptions of processes have been
implemented to make them executable for machines at this phase, but implemen-
tation of semantic descriptions of required services is still needed for the purpose of
dynamic discovery and composition.

Semantics Enrichment of Workflow. Instead of binding required services within the
composition at design-time (development phase), required services can be described
in processes semantically. These semantic service requests can be annotated with
domain ontologies. Domain ontologies are managed in the service management
scope. The final business process is a process defined in some workflow language (e.g.
OWL-S composite process or BPEL enriched with process semantics). The process
of preparing and sending a request for SWS, discovering a service on the basis of
matching semantics and getting its response is dependent on semantic enhancements
in participants (service provider, requester and registry) of SOA.

Runtime Phase. Semantically enriched workflows can be deployed on semantic enabled
execution engine (i.e. execution engine capable of understanding workflow seman-
tics). Execution engine is capable of invoking Web services that are statically bond
in the process during the development phase of life cycle. Also, services defined
semantically in the workflow are searched in the semantic services registries. Ser-
vices discovered on the basis of matching semantics are bound in the workflow at
run time. Discovering a service just on the basis of matching functional semantics
(input, output) may not always acquire right services, therefore, a semantic service
request with in process is defined on the basis of both functional and non-functional
semantics. At the end, final process as a composition of services is executed with
defined control flow and data flow.

Service Management. As described before, the service management phase is the
always-on and helping phase within the life cycle. Managers and developers can
manage service publishing and serving requests for semantic and syntax based Web
services. Web services registries are enhanced to SWSs registries for publishing and
querying for semantically enriched services. Domain ontologies are also managed in
this phase. These domain ontologies can be used to annotate Web services and busi-
ness processes to provide data semantics. Business processes can be managed for the
deployment and execution in this phase as well. Service management phase helps to
provide business constraints for modeling business and technical perspectives of a
Web service integration scenario. The Web Service Description Language (WSDL)
does not support the specification of various constraints, management statements,
classes of service, Service Level Agreement (SLAs) and other contracts and protocols
between Web services.

Traditional business integration scenarios follow the 3-tier business applications inte-
gration architecture. Web services and semantic enhancements in Web services resulted
in the improvement of 3-tier architecture to 4-tier architecture. The additional layer is re-
sponsible for integrating business applications as SWSs and the above-discussed life cycle
addresses issues emerged in traditional SWSs integration scenarios (e.g. management of

39

domain ontologies, deploying and querying SWSs, composing and deploying these services
on semantic enabled execution engines etc.). In next section (Section 3.6) I describe a
framework for dynamic and automated composition of business processes as SWSs.

3.6 SWS Composition Framework

In this section I describe a general framework at an abstract level for dynamic and auto-
mated integration and composition of business processes as SWSs. On the basis of above
discussed challenges and limitations of recent approaches I propose a composition frame-
work, which consists of four modules (as shown in Figure 3.4). Each of these modules
is responsible to perform a specific task that, in combination with other modules results
in a composition framework to generate semantic enabled composite services. Here I de-
scribe each of these modules in detail and discuss which specific composition problem is
addressed by each module.

Semantic Service Requester. The first step to perform dynamic Web services compo-
sition is to discover and select required services on the basis of matching semantics.
This dynamic discovery and selection is a run time process. Because semantic based
discovery and selection of required services at design time also involves human in-
teraction, which no more automates the process of Web services composition. The
semantic service requester involves interaction with:

• SWS registries (e.g. as discussed in [108]) that are capable of publishing se-
mantically enriched descriptions of Web services and for replying for SWS
requests.

• it can also request and interact directly with a known Web service which can
accomplish required objectives.

The discovery and selection process of required services is based both on matching
functional and non-functional semantics of a Web service. For example, in case of
a pizza delivery process, a user sitting in New York requests for a vegetable and
mutton pizza. In case of such a request, there would be multiple services that offer
vegetable and mutton pizza delivery. But in this case, a service with non-functional
matching semantic (e.g. suitable geographical location for a pizza request) is selected
for composition. At this stage it is assumed that suitable work has already been done
to publish SWSs on semantically enriched registries that have capabilities to reply
for SWS queries (as discussed in 4-tier SWS integration architecture (persistence
layer)). In the proposed framework, module 1 (i.e. semantic service requester) is
responsible to perform such a semantic base service request and to select a service
for composition, which has closer semantic match to service request.

Service Binder Like the work supported in bottom-up approach (as discussed in Section
3.2.1), this module is responsible to bind a dynamically discovered and selected
service within composition. Runtime binding of required services can help to meet
challenges produced by services which change on the fly or which become inaccessible

40

on the network with the passage of time. For example in case of composition of
services as a workflow each partner service is bound in workflow at run time so
that only those services become part of composition which are currently accessible
and meet service functional and non-functional requirements. Similarly, in case
of AI planning approach a single service performing some action in a single step
(atomic process) becomes a part of final composition (complex service) generated
by a composition plan. Module 2 of the proposed framework is responsible for
run-time binding and referencing of a service within Web services composition

Figure 3.4: Architecture of dynamic and automated Web service composition framework.

Composition Generator. This module (i.e. module 3) is responsible for generating the
final composition of SWSs, discovered and bound within composition at run time.
In case of a workflow language as a composition of these dynamically discovered
and bound services, this module is responsible for generating the final composition
process in some workflow language (e.g. BPEL process model or OWL-S Process
Model ontology as composition of semantically enriched services). In case of an
AI planning for automatic Web services composition this module generates the fi-
nal composition as a complex service (composite service). Composition Generator
composes these services with well-defined control flow and data flow within compo-
sition. Different approaches have been discussed [86, 101] to automatically compose
SWSs defined by using OWL-S descriptions. The automatic composition of OWL-S
services can result in an OWL-S composite service. Since, WSDL-S does not sup-
port to define composite services therefore, no such approach has been discussed in
Section 3.2 that automatically compose Web services by using the WSDL-S service
descriptions.

Execution Engine. Finally composition of dynamically and automatically composed
services is executed at this stage (module 4). Each service involved with in the
composition is executed according to defined control flow. Data flow definition
helps to pass data between services with in composition. For example, the ap-
proach discussed in Section 3.2.1 uses Semantic Discovery Service (SDS) between

41

process engine (BPWS4J) and Web services to execute the final process with dy-
namically composed services. Similarly, the approach discussed in Section 3.2.3 uses
its execution engine to execute the resulting OWL-S composite process.

3.7 Summary

In this chapter I described a comparative study of recent approaches for semantic based
discovery and composition of Web services. I highlighted dynamic composition issues and
analyzed existing composition approaches with respect to these issues. This comparison
resulted in requirements for new architectural approach that can be used to efficiently
integrate semantically enriched services. To meet these architectural requirements I have
presented a 4-tier architecture that can be used to integrate and compose business pro-
cesses as SWSs. The 4-tier architecture explains necessary concepts to orchestrate, query
and integrate (compose) required services dynamically on the basis of matching semantics.

A SWS integration and composition life cycle has also been discussed in this chapter.
The proposed SWS integration life cycle addresses discovery and integration issues and at-
tempts to bring these efforts together. The life cycle starts with adding semantics to Web
services and defining business goals that need to be achieved by dynamically discovering
and composing SWSs. This chapter described how business processes could be annotated
with business logic, rules and constraints in some machine-readable workflow language
(e.g. Process Model ontology of OWL-S suite) (Chapter 4 describes the constraints that
can be used to translate business processes to OWL-S SWSs). I also described the anno-
tation of business processes with domain ontologies to expose their semantically enriched
interfaces (e.g. as Profile ontology of OWL-S suite). Such semantically enriched workflows
(semantically enriched composite services) can be deployed and executed by an execution
engine that is capable of understanding process semantics. The success of the proposed
Web service integration life cycle and Web services composition framework will be ulti-
mately dependent on the acceptance of emerging standards for SWS. In next chapters of
this thesis I propose a strategy and its prototypical implementation that can be used to
shift existing business processes (BPEL processes, which are syntax based composition of
Web services and expose syntactical interfaces) to OWL-S services (which are semantic
based composition of Web services and expose semantically enriched interfaces) for busi-
ness process automation as dynamic and automated composition of SWSs by utilizing
above discussed architectural and structural concepts.

42

Chapter 4

Mapping Constraints

In this chapter I describe mapping constraints as functional relations between BPEL
process models and OWL-S suite of ontologies by analyzing BPEL and OWL-S. Mapping
constraints have been defined on the basis of different behaviors that BPEL and OWL-S
components show in different situations and relation between these components on the
basis of their matching behaviors. These mapping constraints create the base to define
mapping specifications that can be used to map BPEL process descriptions to OWL-S
suite of ontologies (as discussed in Chapter 5).

4.1 Introduction

Major drawbacks of traditional business process modeling languages are 1) they compose
Web services on the basis of their syntactical information 2) when these processes are
exposed as Web services they have same syntactical limitations as traditional WSDL
services. Consequently, modeling Web services compositions and discovering, invoking
and composing them on the basis of syntactical information is inefficient and (due to
many single points of failure) unreliable. Different research groups in the semantic Web
and SWS community are working on developing standard languages (e.g. OWL-S, WSDL-
S and WSMO) to equip Web service with semantics. SWS community has also presented
different approaches to dynamically discover, invoke and compose these services on the
basis of matching semantics. Due to dynamic and automated behavior of SWSs they
are getting more and more attraction of large business organizations. At this stage an
approach is needed that can be used to shift existing business processes (e.g. BPEL
processes) to SWSs (e.g. OWL-S services) in an efficient and cost affective way rather
than to build semantic based business services from scratch. Such an approach will help
not only to model the compositions of services on the basis of matching semantics but
also to expose semantically enriched interfaces of business processes (BPEL processes)
as OWL-S composite services. These semantically enriched interfaces can be used for
dynamic discovery, invocation and composition of processes as SWSs.

In this chapter I depict mapping constraints that describe correspondence between
business processes (i.e. BPEL processes) and SWSs (i.e. OWL-S services). These map-

43

ping constraints can be used to translate BPEL processes to OWL-S services. Mapping
constraints have been discussed by providing detailed analysis of BPEL process model
and its components and OWL-S suite of ontologies and its control constructs and defining
relation between BPEL and OWL-S components on the basis of their matching functional
characteristics.

A BPEL process model consists of different activities that can be used to interact with
other services, create interface of process and to define control and data flow between ser-
vices. Similarly OWL-S composite service consists of three ontologies (i.e. Profile, Process
Model and Grounding ontologies). Analysis of BPEL process model, OWL-S suite of on-
tologies and their components helps to categorize and to specify that which part of a
process should be mapped to which construct of OWL-S on the basis of their match-
ing functional characteristic. Since, OWL-S suite consists of Profile, Process Model and
Grounding ontologies, therefore mapping constraints are clearly discussed for mapping of
BPEL process components to components of these ontologies.

The remaining chapter is organized as follows: Section 4.2 provides an analytical de-
scription of BPEL process model and functional characteristics of its components. Section
4.3 describes an analytical view of OWL-S suite and its constructs and describes match-
ing functional aspects of BPEL process components and OWL-S constructs. Section 4.4
summarizes this chapter.

4.2 BPEL4WS Process Model Analysis

BPEL specifications allow to create complex business processes by creating and defining
control and data flow between different activities that can be used to perform Web service
invocation, passing data between different activities, handling faults and to terminate a
process. We can model a process by nesting these activities within structured activities
to define how to execute them (i.e. either to execute them in sequence or parallel or
depending on some condition).

As first part of mapping constraints I analyze functional characteristics of a BPEL
process model and its components. During the process of mapping BPEL process to
OWL-S service, I create object view of BPEL process and WSDL services involved with
in a process. Creating such an object view helps to map these activities of a process
to constructs of OWL-S service on the basis of their matching functionality. Here I do
not mean to provide detail description of these components of a process (because BPEL
specifications cover them in more detail) but to analyze functional characteristics of these
activities to create base of their mapping.

4.2.1 Processes

BPEL allows to describe business processes in two ways:

Executable Processes are used to model interaction between participants (Web ser-
vices) of a business process. The logic and state of the process determine the nature
and sequence of Web services interactions conducted by each business partner, and
thus the interaction protocol [42].

44

Abstract Processes are not typically executable. They are meant to couple Web service
interface definition with behavioral specifications that can be used to both constrain
the implementation of business roles and define in precise terms the behavior that
each party in a business protocol can expect from others [62]. One thing to note is
that executable processes are permitted to use the full power of data selection and
assignment but are not permitted to use nondeterministic values. Abstract processes
are restricted to limited manipulation of values to reflect the consequences of hidden
private behavior [42].

4.2.2 Partner Link

A business process interacts with services that are part of business process by using
partner links (< partnerLinks >). More than one partner links are characterized by
using partner link types (< partnerLinkType >) to define relation between two services.

1 <partnerLinks>
2 <partnerLink name="To_Translation_Service_Port_1"
3 partnerLinkType="q1:To_Translation_Service_Port_1Type"
4 partnerRole="portRole"/>
5
6 <partnerLinks>

4.2.3 Primitive Activities

A BPEL process is a set of activities (primitive and structured activities). Primitive
activities are used to perform basic tasks of a process. For example:

Invoke (< invoke >) activity is used to invoke a Web service by sending it some input
message and probably by receiving some output message.

Example 4. invoke activity which performs Web service operation (getMeaning).

1 <invoke partnerLink="To_Translation_Service_Port_1"
2 portType="q2:TranslatorPortType" operation="getTranslation"
3 inputVariable="Message1_To_Translation_Service"
4 outputVariable="Message1_From_Translation_Service"/>

When we talk about mapping constraints, invoke activity has dual behavior. Its one
behavior is to perform a Web service operation by sending it some input message
and probably receiving some output message. Its second behavior is that it can
be used to create the interface of an asynchronous BPEL process (i.e. to send an
output message of a BPEL process to the outer world). In both cases mapping of
invoke activity to OWL-S varies (Section 5.2 discusses it in detail). invoke activity
is used to perform both synchronous as well as asynchronous operations. In case
of a synchronous (request/reply) operation, the process waits till it get reply from
Web service operation. Asynchronous Web service operations are invoked by using

45

invoke activity and process continuo to perform other activities. Response of such
Web service operation is received by using receive activity.

Receive (< receive >) activity receives a message from a Web service probably to start
a process. Like an invoke activity, a receive activity also has dual behavior. For
example it can act as an interface of a BPEL process (i.e. to receive a message
from outer world (probably from another service) to start a process). Its second
behavior is that it can be used to receive a message from a Web service in response
to an asynchronous Web service operation (as discussed above). Discussion about
possible behaviors of these activities is important because a single BPEL activity is
mapped to different OWL-S control constructs (in remaining chapters of this thesis
I write the term control construct as ”CC” and control constructs as ”CCs”) just
depending on their behavior.

Example 5. receive activity used to initiate our example process.

1 <receive partnerLink="Input_Output_Port"
2 portType="q1:Input_Output_PortType" operation="Operation_1"
3 variable="Input_Message" createInstance="yes"/>

Reply (< reply >) activity is used to reply a message in response to some receive activ-
ity. A BPEL process (synchronous or asynchronous) receives an initial message by
using a receive activity to start a process. However, synchronous BPEL process re-
turns results of process by using reply activity and an asynchronous process returns
the result of a process by using invoke activity.

1 <reply partnerLink="Input_Output_Port"
2 portType="q1:Input_Output_PortType"
3 operation="Operation_1"
4 variable="Message_2_From_Translation_Ser"/>

Assignment (< assign >) activity is used to assign values to message variables. In a
BPEL process the Assignment activity can be used to initialize an input message
of a Web service by assigning it values of message parts of output message of an-
other Web service operation (i.e. assigning and passing output of one Web service
operation as input of the next Web service).

1 <assign>
2 <copy>
3 <from variable="Input_Message" part="part"/>
4 <to variable="Message1_To_Translation_Service"
5 part="inputLang"/>
6 </copy>
7 <assign>

Primitive activities are used to perform small tasks with in a complex process and
can be combined by using some structured activities to exactly specify steps of a business
process.

46

4.2.4 Structured Activities

BPEL structured activities are used to define control flow between sub primitive and
structured activities with in a process. BPEL provides a number of structured activities
in which each activity has its own control flow characteristics. Some major structured
activities with their functional behavior are described below.

Sequence (< sequence >) activity is used to define a set of activities which are per-
formed in a sequence. The code sample (given below), shows that sub activities
(i.e. receive and reply) of main activity (i.e. sequence) will be performed in a
sequence.

1 <sequence>
2 <receive partnerLink="Input_Output_Port"...../>
3
4 <reply partnerLink="Input_Output_Port"...../>
5 </sequence>

Flow (< flow >) activity invokes child activities in parallel. The following sample shows
that child activities (i.e invoke activities) are performed in parallel.

1 <flow>
2 <invoke partnerLink="Dictionary_Ser_Port"...../>
3 <invoke partnerLink="Dictionary_Ser_Port"...../>
4 </flow>

Case-switch (< switch >) activity is used to perform child activities under some con-
ditional aspects. The sample switch activity (given below) shows that sub activity
(sequence) will be executed if the message part (i.e. inputLang) of the message
Input Message is equal to English.

1 <switch>
2 <case condition="bpel:getVariableData(’Input_Message’,
3 ’part’, ’inputLang’)= ’English’">
4 <sequence>
5
6 </sequence>
7 </case>
8 </switch>

While (< while >) activity performs child activity as long as the while condition holds
true. The sample code given below shows that sub activity (i.e. sequence activity)
of while activity will be performed as long as value of variable status remains ”-1”.

47

1 <while name="CREATION_WHILE" condition="bpws:getVariableData(
2 ’status’, ’status’, ’//type’)=-1>
3 <sequence
4
5 </sequence>
6 </while>

4.2.5 Some Additional Activities

Wait (< wait >) is used to wait for some time.

Throw (< throw >) activity is used for throwing exceptions and indicating faults.

Terminate (< terminate >) activity is used to terminate a process.

Analysis of BPEL process model and its components helps to understand functional
characteristics of BPEL activities. On the basis of these characteristics of BPEL activities
I summarize mapping specifications (as discussed in Chapter 5) that can be used to
translate existing BPEL processes to OWL-S SWSs.

In this section I have provided a short description of BPEL processes and functional
constraints of BPEL activities. I have also discussed about different roles that a single
activity can play in a process. Some syntactical information about these activities has
also been provided. This syntactical information is very important from point of im-
plementation of our mapping approach. I have also discussed logical behavior of these
activates so that it become easier to specify that which BPEL activities have matching
behavior to which OWL-S CCs so that they can be mapped to their relevant CCs.

4.3 OWL-S Ontology Analysis

OWL-S is suite of OWL ontologies developed to describe semantic Web services and
consists of Profile, Process Model and Grounding ontologies. Here, I highlight logical
aspects of OWL-S ontology to justify that how OWL-S can be used to address syntactical
limitations of a BPEL process. I also analyse functional characteristics of OWL-S CCs
so that BPEL process and OWL-S SWS components can be mapped on the basis of
their matching behavior. The next secttion provides the technical overview and analyzes
functional constraints of OWL-S suite and its components.

4.3.1 OWL-S: Technical Overview

As stated above that OWL-S is suite of OWL ontologies and consists of the Profile, Process
Model and Grounding ontologies. In this section I describe that what information these
ontologies provide and how we can use them to address semantic limitations of BPEL
processes.

Service ontology actually acts as organizer for the Profile, Process Model and Grounding
ontologies. Each OWL-S service has one instance of the Service class and each

48

Table 4.1: Analytical description of BPEL process model activities with respect to map-
ping constraints.

Activities Description
Primitive Activities
Invoke Performs WS operation or create pro-

cess interface
Receive Receives process input message or re-

sponse of synchronous WS operation
Reply Replies in response of some Receive ac-

tivity
Assignment Assigns message values
Structured Activities
Sequence Performs sub-activities in sequence
Flow Synchronizes sub-activities
Case-switch Shows conditional behavior
While Repeatedly performs a task
Some Other Activities
Wait Waits for some time
Throw Throws exceptions and errors
Terminate Terminates a process
Note: WS stands for Web service.

Service class has relation with Profile, Process Model and Grounding classes by
using properties presents, describedby and supports (as show in the sample code
below). One service can have only one Service ontology but can refer to multiple
Profile ontologies to expose different semantically enriched interfaces for a single
Process Model ontology. Successfull shifting of BPEL process to OWL-S SWS needs
to extract Profile, Process Model and Grounding ontologies from a BPEL process
model.

1 <service:Service>
2 <service:describedBy>
3 <process:CompositeProcess rdf:about="http://www.BPEL2OWLS.org/
4 ChangeTestURI.owl#TestProcess"/>
5 </service:describedBy>
6 <service:presents>
7 <profile:Profile rdf:about="http://www.BPEL2OWLS.org/
8 ChangeTestURI.owl#TestProfile"/>
9 </service:presents>

10 <service:supports>
11 <grounding:WsdlGrounding rdf:about="http://www.BPEL2OWLS.org/
12 ChangeTestURI.owl#TestGrounding"/>
13 </service:supports>
14 </service:Service>

49

Profile ontology is sub ontology of OWL-S suite and can be used to semantically describe
Web service capabilities. Against the traditional syntactical interface exposed by
a business process or a Web service , Profile ontology is used to present semanti-
cally enriched information (as input, output, pre-condition and effects (IOPE)) of
a process as a SWS. Activities that create interface of a BPEL process model are
therefore important so that they can be used to extract information required to
create interface of a BPEL process as OWL-S SWS (i.e. Profile ontology (Section
5.4 covers it in detail)). In addition with describing capabilities of a service, the
Profile ontology is also used to describe semantically enriched information about a
required service so that a required service can be discovered on the basis of match-
ing semantics (matching Profile ontology). Like IOPE, other service attributes (e.g
service category, geographical location etc.) are used in the matching process to dy-
namically discover and compose a required service. The Profile ontology is used by
the service provider and service requester to publish and discover Web services on
the basis of matching semantics. Once a required service is discovered by computer
agent the Process Model ontology describes how service works.

Process Model describes how to interact with a service. A Process Model is not a
programme that can be executed but specifies different ways with which a client can
interact with a service. Like a workflow language, the Process Model ontology can
be used to model composition of multiple atomic and composite processes (services).
While talking about shifting a BPEL process to OWL-S service, the Process Model
ontology is worthwhile to describe control and data flow between sub atomic and
composite processes. Like a BPEL process an OWL-S Process Model can have any
number of inputs and outputs. Figure 4.1 provides an overview of the OWL-S
Process Model ontology. It shows that Process class describes its Input, Output,
Local (local variable) etc. by using object properties hasInput, hasOutput, hasLocal
etc. where as hasInput, hasOutput, hasLocal are sub-classes of Parameter class.
Figure 4.1 shows that Atomic Process, Simple Process and Composite Process are
sub-classes of Process class. Composite process uses its object property composedOf
to use Control Construct which has sub-classes Sequence, Split, Split-Join, Repeat-
While and If-Then-Else that can be used to define control flow with in a composite
process.

Grounding ontology describes about how to access a service by specifying message for-
mats, protocols and transport. The message of complex data types are defined in
the Grounding ontology by using the XSL Transformation [40]. Grounding ontology
actually refers to the WSDL implementation of original service. When we discuss
about Grounding of a composite service then it is actually a collection of Grounding
ontologies of all sub atomic and composite processes involved in Process Model (
Section 5.5 addresses this issue in more detail).

4.3.2 Processes

OWL-S has three kinds of processes (i.e. simple, atomic and composite processes) where as
BPEL has two kinds of processes (i.e. executable and abstract processes). Here, we analyze

50

Figure 4.1: OWL-S Process Model ontology.

capabilities of these OWL-S processes so that we can have a comparison of capabilities
and limitations of these BPEL and OWL-S processes for the purpose of mapping from
BPEL to OWL-S.

Atomic Processes are processes that can be executed in a single step. Atomic processes
are somehow like Web services operations that can be performed in a single step
by sending it an input message and probably receiving some output message with
in the whole larger BPEL process. OWL-S atomic process has no sub atomic or
composite process. An atomic process is described by using the class AtomicProcess
which is sub class of the Process class.

1 <owl:Class rdf:ID="AtomicProcess">
2 <owl:subClassOf rdf:resource="#Process"/>
3 </owl:Class>

Simple Processes Unlike to atomic processes, simple processes are not invocable and
are not associated with Grounding but like atomic processes can be executed in a
single step. A simple process may be used either to provide a view of (a specialized
way of using) some atomic process, or a simplified representation of some composite
process (for purposes of planning and reasoning) [71].

51

Composite Processes are processes that can have sub atomic and composite processes.
Like a workflow modeling language, we can use composite processes to model the
compositions of multiple services on the basis matching semantics. A composite
process allows to define the control flow between sub atomic and composite processes
by using different CCs (e.g. sequence, split, split-join etc.). Since, a composite
process is composition of multiple processes therefore, output of one process may
need to be passed as input of the next process. Such a flow of inputs and outputs
can be defined by addressing data flow and parameter binding issues.

4.3.3 Performing Individual Processes

As, I discussed before that a composite process is composition of sub atomic and composite
processes, these processes can be performed by using Perform CC. The invocation of a
process is indicated by an instance of the Perform class. The process property of class
Perform indicates the process to be performed.

4.3.4 Control Constructs

I have discussed before that Process Model ontology is workflow like language and can
be used to define workflow of sub atomic and composite processes. OWL-S defines many
CCs that can be used to define control flow between sub processes with in Process Model
ontology. Discussion about capabilities of these CCs is necessary because they are used
to define control flow of BPEL process in the mapped OWL-S service. OWL-S defines
many CCs that can be used to define control flow between process components. Some of
these CCs are as under:

Sequence , components of a Sequence CC are performed in a sequence. Sequence class
is sub class of the class ControlConstruct (as shown in sample code below) which
holds other CCs as sub classes.

1 <owl:Class rdf:ID="Sequence">
2 <rdfs:subClassOf rdf:resource="#ControlConstruct"/>
3
4 </rdfs:subClassOf>
5 </owl:Class>

Split CC is used to perform its process components in parallel. Also, a Split CC com-
pletes as soon as all of its process components are scheduled for execution.

Split-Join CC is used for concurrent execution of process components with partial syn-
chronization. A Split-Join CC complets as soon as all of its process components are
performed.

If-Then-Else CC can be used to implement Conditional behavior with in a composite
process. It has three properties (i.e. ifCondition, then, else). Execution of then and
else depends on either ifCondition is true or false (i.e. if ifCondition is true then
perform then part and if ifCondition is false then perform else).

52

Table 4.2: Analytical description of OWL-S ontology constructs with respect to mapping
constraints.

OWL-S Description
Profile
Input/Output Provides functional semantics of service

as inputs and outputs
Pre-condition/effect Describes functional semantics as con-

ditions before and after service execu-
tion

Result Conditional output of service
Service category, provider, location Non-functional semantics
Process Model
Atomic process Executes in single step
Simple process Gives multi view of same process
Composite process Executes in multiple steps
Sequence Performs process components in se-

quence
Split Concurrently executes process compo-

nents
Split-Join Synchronizes process components
If-Then-Else Shows conditional behavior
Repeat-While Repeatedly perform sub component
Grounding
WsdlGrounding Describes process grounding
hasAtomicProcessGrounding Provides reference of atomic process

grounding
xsltTransformationString Transform XML document to other

Repeat-While CC is used to repeatedly perform its process component (i.e. as long
as Repeat-While condition holds true). Condition is important part of OWL-S CCs
(e.g. If-Then-Else, Repeat-While, Repeat-Until CCs).

4.3.5 Condition Expressions

SWRL [81] expressions are most recommended standard to define conditions for OWL-S
conditional CCs (e.g. Repeat-While, If-Then-Else etc.). OWL-S API [96] (developed by
MIDSWAP Lab) supports the execution of conditions defined by using SWRL expres-
sions. In Section 5.3.5 I explain how BPEL condition statements are translated to SWRL
expressions in mapped OWL-S SWS so that process components of conditional CCs can
be performed on the basis of true or false statuses of these SWRL expressions.

53

4.3.6 Data Flow and Parameter Binding

In BPEL process models, output of one Web service operation is passed as input of the
next Web service operation by assigning values of their message parts. OWL-S defines
a class Binding to define the data flow between process components. The Binding class
can be used to specify that from which process the input is coming and what is input
parameter and to which parameter of which process it is to be assigned. For sure, OWL-S
specifications allows to define hard code values as input of a process (e.g. 5, ”hello” etc.).

4.3.7 Parameters and Results

In OWL-S specifications, parameters are what we call variables in general programming
languages and are expressed by using Parameter class. The type of OWL-S parameters
can be expressed by a URI of a specific OWL class (defined in a domain ontology) which
describes that the value of the parameter is of the type of that ontology class. The
parameter type of a parameter can also be of usual type (e.g. int, string etc.).

Table 4.2 summarizes important components of OWL-S ontology and their description.
On the basis of capabilities and limitations of components of BPEL and OWL-S I define
mapping specifications for shifting BPEL process model to OWL-S ontology.

4.4 Summary

Translating business processes to SWSs can efficiently effect the automation of busi-
ness processes as dynamic and automated composition of SWSs. Successfully shifting a
business process (i.e. BPEL process) to OWL-S service is possible by defining relation
between BPEL process and its components and OWL-S service and OWL-S CCs. In this
chapter I have provided an analytical description of BPEL process model and OWL-S
suite and their components. I have also discussed the possible behaviors that a single
component can show in different situations and how different components of BPEL and
OWL-S can be mapped on the basis of their matching behaviors. Since, OWL-S is suite
of OWL ontologies therefore, I have described mapping constraints to translate a BPEL
process to complete OWL-S suite of ontologies (i.e. Profile, Process Model and Grounding
ontologies).

I have also provided necessary information about syntax of BPEL and OWL-S compo-
nents. Different issues, like defining control flow, data flow, condition statements, creating
interfaces in BPEL and OWL-S have been discussed in detail. I have also discussed in
detail that how individual Web services operations are performed in a BPEL process and
how such operations are handled in a SWS language (e.g. OWL-S). On the basis of these
mapping constraints I describe mapping specifications and step by step translation of
BPEL process model (Appendix A) to OWL-S service (Appendix C) in Chapter 5 so that
BPEL processes can be dynamically discovered, invoked and composed as OWL-S SWSs.

54

Chapter 5

Mapping BPEL Process
Descriptions to OWL-S

In this chapter I present a mapping strategy (mapping specifications) that helps to over-
come syntactical limitations of BPEL processes by mapping (translating) BPEL processes
to OWL-S services. The proposed strategy supports the mapping of BPEL process de-
scriptions to complete OWL-S suite of ontologies (i.e. Profile, Process Model and Ground-
ing ontologies). Since, OWL-S is suite of Profile, Process Model and Grounding ontologies
therefore, extraction of these ontologies from a BPEL process model has been discussed
in detail.

5.1 Introduction

Providing machine understandable meanings of data and services on the Web is changing
the way organization communicate and co-operate with each other in growing e-business
world. The existence of established enterprize modeling methods, such as Business Process
Modeling (BPM) methods, suggest that they could be exploited by emerging technologies
such as semantic Web services to provide a more mature framework incorporating both
business and Web application-specific technologies [54].

In previous chapter (Chapter 4) I described mapping constraints in detail which pro-
vide complete analysis of functional and non-functional aspects of BPEL and OWL-S
and components of these languages. On the basis of these mapping constraints I describe
mapping specifications and step by step translation of BPEL process to OWL-S suite of
ontologies. Mapping specifications describe translation of a BPEL process description to
complete OWL-S suite of ontologies. Another important feature of this work is that not
only the BPEL process is translated to OWL-S composite service but all Web services
operations within a BPEL process model are mapped to OWL-S atomic processes with
complete OWL-S suite of ontologies. Consequently, the Process Model ontology of the
mapped OWL-S service defines a semantic based workflow of sub processes and the Pro-
file ontology provides semantically enriched information about capabilities of a process as

55

OWL-S SWSs that can be used to perform discovery, invocation and composition tasks in
a dynamic and automated fashion. I have also implemented the use of multiple algorithms
that help in more consistent and efficient translation process. Even though few efforts
have already been done to bridge the semantic gap between process modeling languages
(e.g. BPEL, FBPML etc.) and OWL-S SWSs, but my approach is unique with respect to
its support for mapping of BPEL processes to complete OWL-S suite of ontologies as well
as with respect to translation of individual Web services operations to OWL-S atomic
processes. Such an approach helps to translate legacy systems into reusable, semantically
described services. The mapping strategy is a more closer step to practically shift exist-
ing business systems from a syntactical to semantic based environment for the purpose
of business process automation in semantic service oriented paradigm.

Furthermore, BPEL is mature enough as compare to OWL-S therefor, limitations
of mapping specifications are also discussed at stages where direct mapping is not
possible or needs some more work from OWL-S community. Since, there is no semantic
information with in a BPEL process therefore, some areas are highlighted where end
user needs some manual changes in mapped OWL-S service to enable it for dynamic
discovery, invocation and composition by other semantic enabled systems.

Note:Before it that I proceed with mapping strategy (mapping specifications), I would
like you to recall some talks about Web service, semantic Web, SWSs and SWS languages
from Chapter 2 and the example scenario (as discussed in Section 1.2). Recalling
the SWS literature and example scenario will help to better understand the remaining
chapter because in remaining chapter I will describe mapping specifications with respect
to motivational scenario that is discussed in Section 1.2 and by using the BPEL process
(Appendix A) which is modeled in MS BizTalk Server.

The remaining chapter is organized as fellows: Mapping specifications have been dis-
cussed in Section 5.2. Section 5.3 briefly describes the mapping of BPEL process model
to OWL-S Process Model ontology. Extraction of Profile and Grounding ontologies from
BPEL process model have been discussed in Sections 5.4 and 5.5 respectively. Sections
5.6 summarizes this chapter.

5.2 Mapping Specifications

In previous chapter (Chapter 4), I have discussed in detail about process modeling and
semantic capabilities of BPEL and OWL-S and components of these languages. Since,
OWL-S is suite of OWL ontologies (i.e. Profile, Process Model and Grounding ontologies)
therefore, I describe mapping of BPEL process to OWL-S at three levels (i.e. mapping of
BPEL process model to OWL-S Profile, Process Model and Grounding ontologies). Table
5.1 summarizes specifications for mapping BPEL process to OWL-S. Mapping specifica-
tions describe from abstract level to components and activities level translation of BPEL
process to OWL-S service. Some of BPEL activities can not be directly mapped to OWL-
S, as OWL-S does not provide CCs that have matching behavior to thees BPEL activities.
Table 5.1 also highlights such activities that can not be directly translated to OWL-S CCs
(e.g. Terminate, Throw and Wait activities). On the basis of these specifications I de-

56

scribe the mapping of BPEL process model to OWL-S in detail in remaining chapter.

Table 5.1: Summary of BPEL4WS to OWL-S mapping specifications.
Ontology BPEL4WS OWL-S
Profile

Receive (message variable) Input parameters
Invoke (input message variable) Output parameters
Invoke (input/output message variable) Input/Output parameters
Reply (message variable) Output parameters

Process Model
Executable process Composite process
Primitive activity (operation) Atomic process
Primitive activity (Invoke) Perform CC
Sequence Sequence
Flow Split-Join
Switch-case Sequence(If-Then-Else)
While Repeat-While
Condition statement SWRL expression
Assignment Data flow specifications
Terminate Note
Throw Note
Wait Note

Grounding
Primitive activity (operation) hasAtomicProcessGrounding
Complex Message xsltTransformationString

Note: No equivalent control construct is available in OWL-S for direct mapping.

Algorithm 1 provides a very abstract level definition of the recursive algorithm used for
extracting OWL-S suite from BPEL process model according to mapping specifications
described in Table 5.1. The algorithm is used to traverse through BPEL file’s objects tree
as long as activities in BPEL file come to end. An important thing to note in Algorithm
1 is that when an activity is non-I/O primitive activity then it is mapped to perform CC
(as shown in lines 13 and 33 of Algorithm 1) to perform relevant atomic process and if an
activity is an I/O primitive activity then it is used to create input/output parameters of
Profile ontology (as shown in lines 21, 25 and 29 of Algorithm 1). Mapping specifications
(as shown in Table 5.1) also describe that an I/O primitive activity is used to create
input/output parameter of Profile ontology and a primitive activity which perform a Web
service operation is mapped to Perform CC (Chapter 4 describes such behavioral aspects
of BPEL activities and OWL-S CCs in more detail). In this section I have provided
an abstract level definition of mapping specifications and mapping algorithm that can
be used to map a BPEL process model to OWL-S suite. In next section I describe the
extraction of Process Model ontology from BPEL process model on the basis of these
mapping specifications.

57

Input: Tree view list of BPEL process and WSDL services
Output: OWL-S suite of ontologies

begin1

Extract BPEL activity from tree2

Map structured activity to OWL-S CC (Algorithm 2)3

Get child activities4

while child activities exist do5

if activity is not structured activity then6

if activity is assignment activity then7

while activity is assignment activity do8

Traverse activity list9

end10

if activity is non-I/O primitive activity (i.e. invoke activity) then11

Map it to perform CC to perform atomic process1213

Create data flow14

Add reference of atomic process Grounding15

end16

end17

if activity is not assignment activity then18

if activity is I/O receive activity then19

Create composite process input20

Create Profile input parameters21

else22

if activity is I/O reply activity then23

Create composite process output24

Create Profile output parameters25

else26

if activity is I/O invoke activity then27

Create composite process output28

Create Profile output parameters29

else30

if activity is non-I/O invoke activity then31

Map it to perform CC to perform atomic process3233

Create data flow34

Add reference of atomic process Grounding35

end36

end37

end38

end39

end40

end41

if child activity is structured activity then42

Map structured activity to OWL-S CC (Line 3)43

end44

end45

end46

Algorithm 1: Abstract level definition of mapping algorithm.

5.3 Mapping to the OWL-S Process Model Ontology

In this section I describe how a BPEL process model is mapped to OWL-S Process Model
ontology with defined control and data flow. The Process Model mapping specifications

58

describe about how BPEL primitive and structured activities, condition statements, in-
put/output data passing between different activities, variable etc. are mapped to OWL-S
relevant CCs, SWRL expression and parameters. I also provide some code example of
mapping of BPEL activities to OWL-S CCs. Whole mapping specifications depend on
functional characteristics of BPEL and OWL-S components as described in Chapter 4.
During whole discussion of mapping specifications we consider the translation of BPEL
process (as shown in Appendix A) to OWL-S composite service (as shown in Appendix
C). Now I describe step by step mapping of BPEL process components to OWL-S CCs.

5.3.1 BPEL Process to OWL-S Composite Process

BPEL process model is composition of multiple Web services operations with defined
control and data flow to perform a joint task. A BPEL process model (orchestration) is
mapped to OWL-S composite process which is a semantic based composition of multi-
ple atomic and composite processes. Control flow and data flow between different Web
services operations with in a BPEL process model is mapped to control flow and data
flow between process components of an OWL-S composite process defined with in OWL-
S Process Model ontology. An atomic process with in a composite process is result of
mapping of a Web service operation that is performed by a primitive activity.

5.3.2 Web Service Operation to OWL-S Atomic Process

We discussed before that a BPEL process is composition of Web service operations which
can be performed in single step. Each Web service operation with in a BPEL process is
mapped to OWL-S atomic process (as show in Figure 5.1). The mapped atomic process
consists of complete OWL-S suite of ontologies (i.e. Profile, Process Model and Grounding
ontologies). Since, BPEL specifications are used to model the behavior and interaction be-
tween Web services and actual tasks are performed by executing Web services operations
therefore, a successful and useful mapping of BPEL process model to OWL-S is intimately
dependent on translation of each Web service operation involved with in a BPEL process
to OWL-S atomic process. As much as I know, till now there has no effort been done
which supports the mapping of a BPEL process to OWL-S and translates Web services
operations with in a BPEL process to OWL-S atomic processes. Appendix B describes a
sample translation of a Web service operation (getTranslation) to OWL-S atomic process
(getTranslationAtomicProcess) according to mindswap Lab’s WSDL2OWL-S standards.
During the mapping process each Web service operation is mapped to OWL-S atomic
process and stored in a separate OWL file. An additional benefit of this step is that
mapped atomic process can also be used with other semantic enabled systems. We can
also execute these atomic processes by using some execution engine (e.g. OWL-S API)
or by importing and executing them in SWSs development tool (e.g. Protégé (OWL-S
Editor)).

5.3.3 Primitive Activity to Perform Construct

In above section I have discussed that a Web service operation performed by a primitive
activity is mapped to OWL-S atomic process. The primitive activity which performs

59

Figure 5.1: OWL-S atomic processes generated from WSDL operations.

Web service operation is mapped to OWL-S Perform CC to perform that atomic process
with in mapped OWL-S composite service. For example consider the primitive activity
(<invoke>) (as shown in Example 4) that is used to perform Web service operation
getTranslation. The Web service operation performed by this primitive activity is mapped
to OWL-S atomic process (i.e. getTranslationAtomicProcess, as discussed in previous
section (Section 5.3.2)) and stored in getTranslation.owl file and primitive activity is
mapped to OWL-S Perform CC to perform relevant atomic process (i.e. to perform
atomic process ”getTranslationAtomicProcess” as shown in sample code below).

1 <process:process rdf:resource="http://examples.org/DummyURI.owl#
2 getTranslationProcess"/>

5.3.4 Structured Activity to OWL-S Control Construct

BPEL structured activities are used to define control flow between different child activities.
OWL-S provides a number of CCs (e.g. Sequence, Split etc.) for defining control flow
between sub processes. Table 5.1 summarize mapping of BPEL structured activities to
OWL-S control constructs on the basis of their matching behavior. I have described in
detail about behavioral characteristics of BPEL structured activities and OWL-S CCs in
sections 4.2.4 and 4.3.4. Algorithm 2 shows a generic algorithm for mapping of BPEL
structured activities to OWL-S CCs that are used to define control flow of mapped OWL-
S service. As sample of mapping these activities I describe translation of two structured
activities (i.e. flow and switch) to relevant OWL-S CCs (i.e. Split-Join and Sequence of
If-Then-Else CCs), because mapping of these activities is a little bit tricky and involve
some important control flow aspects.

Synchronization between sub activities and process components is important for defin-
ing workflows especially in complex business process integration scenarios. BPEL uses
flow activity to define synchronization between sub activities. ”A flow activity completes

60

when all of its sub activities are completed”. OWL-S CCs (e.g. Split and Split-Join)
are used to define synchronization between process components. ”Split-Join completes
when all of its process component have completed”. Where as capabilities of Split CC are
expressed as: ”Split completes as soon as all of its process components have been sched-
uled for execution”. Even though both Split and Split-Join CCs are used for concurrent
execution of process components but I map flow activity to Split-Join CC on the basis
of their matching functional characteristics.

Input: structured activity
Output: OWL-S CC

begin1

if activity equal to sequence then2

Map to Sequence CC3

else4

if activity equal to flow then5

Map to Split-Join CC6

else7

if activity equal to while then8

Map to Repeat-While CC9

else10

if activity equal to switch then11

Map switch activity to Sequence of If-Then-Else CCs (Algorithm12

3)
end13

end14

end15

end16

end17

Algorithm 2: Mapping of structured activities to OWL-S CCs.

A switch structured is used to describe conditional behavior and consists of a list of
one or more conditional branches defined by using case elements. A case element has
a condition attribute to define its condition and can have an optional otherwise branch
which is executed if the case condition becomes false. The switch activity is mapped to
Sequence CC of OWL-S specifications and each case element listed under switch activity
is mapped to If-Then-Else CC. The condition part of each case element is translated
to SWRL expression (discussed in Section 5.3.5) and otherwise part of case element is
mapped to else part of If-Then-Else CC. We can summarize mapping of switch activity
with a list of case elements as a sequence (Sequence) of If-Then-Else CCs mapped with
optional else parts. Let us consider following switch activity example:

1 <switch>
2 <case condition="bpel:getVariableData(’Input_Message’,
3 ’part’, ’inputLang’)=’English’">

61

4 <invoke partnerLink="Dictionary_Ser_Port"...../>
5 </case>
6 </switch>

Mapping of above switch activity to OWL-S is described in Example 6:

Example 6. BPEL Switch activity mapped to OWL-S Sequence of If-Then-Else CCs
and condition statement translated to SWRL expression (In all remaining examples
bpel4ws2owl1 and dummyURI2 are refereed to dummy URIs that are used by mapping
tool).

1 <process:Sequence>
2
3 <process:If-Then-Else>
4 <process:ifCondition>
5 <expression:SWRL-Condition>
6 <expression:expressionBody rdf:parseType="Literal">
7 <swrl:AtomList xmlns:swrl="http://www.w3.org/2003/11/swrl#">
8
9 <swrl:BuiltinAtom>

10 <swrl:builtin rdf:resource="http://www.w3.org/2003/11/
11 swrlb#equal">
12 </swrl:builtin>
13
14 <rdf:first rdf:resource="&bpel4ws2owls#inputLang">
15 </rdf:first>
16
17 <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#
18 "String">’English’</rdf:first>
19
20 </swrl:BuiltinAtom>
21 </swrl:AtomList>
22 </expression:expressionBody>
23 </expression:SWRL-Condition>
24 </process:ifCondition>
25 <process:then>
26 <process:process rdf:resource="&dummyURI#getMeaningProcess"/>
27 </process:then>
28 </process:If-Then-Else>
29 </process:Sequence>

In above example (i.e. Example 6) I have discussed a very simple conditional scenario
in which switch activity involves single case element that is mapped to If-Then-Else
CC. If a switch activity has multiple case elements which may have optional otherwise

1http://www.BPEL2OWLS.org/ChangeTestURI.owl
2http://examples.org/DummyURI.owl

62

branches then following algorithm (i.e. Algorithm 3) is used to traverse through the list
of case elements and to map each case element to If-Then-Else CCs with in a Sequence
CC.

Input: switch activity
Output: Sequence of If-Then-Else CCs in resulting OWL-S service

begin1

if activity equal to switch then2

Map switch activity to Sequence CC3

Traverse through switch activity4

while activity equal to case do5

Map case element to If-Then-Else CC6

Map condition statement to SWRL expression (algorithm 4)7

Go to Line 4 of Algorithm 1 to map child activities under case element8

end9

if activity equal to otherwise then10

Create else part of If-Then-Else CC11

Go to Line 4 of Algorithm 1 to map child activities under otherwise part12

end13

end14

end15

Algorithm 3: Algorithm to traverse through Switch activity and its case elements
and to map them to relevant OWL-S CCs.

5.3.5 Condition Statement to SWRL Expression

Conditions are an important part of BPEL activities (e.g. switch, while etc.) and OWL-
S CCs (e.g. If-Then-Else, Repeat-While etc.). Without mapping condition statements,
only mapping of BPEL activities which depend on conditions to OWL-S CCs is not
useful. I have implemented an efficient algorithm that translates condition statements of
BPEL activities to SWRL expressions which are supported by OWL-S specifications. The
mapped SWRL expressions can be parsed and executed by execution engines (e.g. OWL-
S API). Mapping condition statements to SWRL expressions supports all conditional
operators (e.g. =, ! =, <, >, <=, >= etc.). In previous section I have given an example
(Example 6) of mapping of a switch activity to its relevant OWL-S CC (i.e. If-Then-Else
CC) and its condition statement to SWRL expression. Algorithm 4 shows how condition
statements are parsed and mapped to SWRL expressions (Example 6, lines 3 to 24 show
a mapped SWRL expression of If-Then-Else CC).

63

Input: condition statement
Output: SWRL expression

begin1

Parse condition statement2

Extract left hand operands of condition statement (i.e. message1 Name, variable1 Name3

and part1 Name)
if variable1 Name equal to null and part1 Name equal to null then4

while list of Local Variables not ended do5

if local Variable Name equal to message Name then6

Save reference of local variable as local Variable1 Name7

end8

end9

end10

Find condition operator11

if right hand operand is message variable of an atomic process then12

Find index of ”and” operator or ”or” operator13

if ”and” operator exists or ”or” operator exists then14

Display message ”Multiple conditions are not supported”15

Extract right hand operand of condition statement16

end17

Extract right hand operand of condition statement (i.e. message2 Name,18

variable2 Name and part2 Name)
if variable2 Name equal to null and part2 Name equal to null then19

while list of Local Variables (local Variable Name) not ended do20

if local Variable Name equal to message Name then21

Save reference of local variable as (local Variable2 Name)22

end23

end24

end25

end26

Extract right hand operand (i.e. expression)27

if (local Variable1 Name equal to null and local Variable2 Name equal to null) or (28

local Variable1 Name equal to null and expression equal to null) then
while condition operands not end do29

while list of atomic processes not ends do30

if operand equal to atomic process input then31

Save reference of atomic process input32

end33

if operand not equal to atomic process input then34

Find operand in output list of atomic processes and save its reference35

end36

end37

end38

end39

Generate SWRL expression;40

end41

Algorithm 4: Algorithm to parse condition statement and to generate SWRL
expression.

The sample code given below describes some example condition statements which
involve only input/output parameters of processes or input/output parameters of
processes and local variables or condition statements that involve only two local variables
or static values (e.g. 1, -1, ”hello” etc. as shown in sample statements that are given
below).

64

1 <case condition="bpel:getVariableData(’Message’,’part’,’value’)=-1">

1 <case condition="bpel:getVariableData(’message1_Name’,
2 ’variable1_Name’,part1_Name)=’English’">

An important thing that need here to be discussed is that complexity of condition
statement can vary with complexity of message variables being used in condition state-
ment. Because extracting message variable and message parts of an atomic process that
are being used in condition statement is a complex task (specially when message variables
of complex message types are involved). However, Algorithm 4 handles the mapping of
condition statements which involve variables of complex message types to SWRL expres-
sions carefully and efficiently by parsing and tracking the list of atomic processes and
their messages involved in condition statements.

5.3.6 Message Assignment to Data Flow

We can discuss the mapping of data flow at two levels: one is defining input and output
of a composite process, second level of defining data flow is passing messages between
process components with in composite process.

To understand data flow definition at first level, consider a BPEL process in which
receive activity receives a message from outer world to start a process (e.g. Appendix
A). Such a message which initiates a process is defined as input message of composite
process with in Process Model ontology of mapped OWL-S service. In remaining process
this message is referred as a message which belongs to the process (TheParentPerform)
to pass this message as input of sub processes. Similarly such situations are also possible
in which the output of a sub process becomes the output of composite process. In such
cases output of sub process is also defined as output of the process (TheParentPerform).

As an example consider a receive activity (as shown in Example 5) in a BPEL process
which receives a message to start a process . The definition of message (Input Message)
received by receive activity is given in relevant WSDL file (as shown in sample code
below).

Example 7. Input message schema of Translator service.

1 <types>
2 <xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
3
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element name="inputStr" type="xs:string" />
7 <xs:element name="inputLang" type="xs:string" />
8 <xs:element name="outputLang" type="xs:string" />
9 </xs:sequence>

10 </xs:complexType>

65

11 </xs:element>
12 </xsd:schema>
13 </types>

An important thing that need to be noted is that above message definition is based only
on syntax and provides no semantic information that can be used by computer agents for
the purpose of dynamic and automated discovery, invocation and composition of mapped
OWL-S service. When such messages are mapped to OWL-S, they are annotated with
domain ontologies to provide semantics for computer agents to reason about them (we
discuss these issues in detail in Section 5.4). However, above message is used to define
data flow as input of composite process (as shown below).

1 <process:CompositeProcess rdf:about="&bpel4ws2owls#TestProcess">
2 <process:composedOf>
3
4 <process:hasInput rdf:resource="&bpel4ws2owls#inputLang"/>
5 <service:describes rdf:resource="&bpel4ws2owls#TestService"/>
6 <process:hasInput rdf:resource="&bpel4ws2owls#inputStr"/>
7 <process:hasInput rdf:resource="&bpel4ws2owls#outputLang"/>
8
9 </process:composedOf>

10 </process:CompositeProcess>

This input message of the composite process can be passed as input of sub processes
(atomic or composite processes) with in composite process. For example, in our mapped
OWL-S service (i.e. Appendix C), ”getTranslation1” is an atomic process with in mapped
composite process and sample code below (taken from Appendix C) shows that input
parameter of composite process (i.e. inputLang) can be passed as input (inputLanguage)
of the sub atomic process (getTranslation1).

1 <process:Perform rdf:about="&dummyURI#getTranslation1">
2 <process:hasDataFrom>
3 <process:InputBinding>
4 <process:valueSource>
5 <process:ValueOf>
6 <process:theVar rdf:resource="&bpel4ws2owls#inputLang"/>
7 <process:fromProcess rdf:resource="http://www.daml.org/
8 services/owl-s/1.1/Process.owl#TheParentPerform"/>
9 </process:ValueOf>

10 </process:valueSource>
11 <process:toParam rdf:resource="&dummyURI#inputLanguage"/>
12 </process:InputBinding>
13 </process:hasDataFrom>
14
15
16 </process:Perform>

66

I have also discussed that with in a BPEL process model output of one Web service
operation can be used as input of the next Web service operation. During the mapping of
a BPEL process to OWL-S service, passing messages (data) between sub processes with
in a composite process is addressed by using the Binding class (as described in above
sample code).

5.3.7 Variables to Local Parameters

Like traditional programming languages, we can also declare variables in a BPEL process
to store and share data between different activities with in a process. Such variables with
in a BPEL process are mapped to local variables (LocalVariable) in OWL-S. These local
variables can be used to manipulate and share data between sub atomic and composite
processes. In Section 5.3.5 we have discussed that how these local variables are used in
condition expressions to store and compare values with inputs and outputs of sub atomic
and composite processes. Local variables can be connected with processes by using the
property hasLocal of the process class (as shown in sample code below).

1 <process:hasLocal>
2 <process:Local rdf:ID="Dummy_Local_Var">
3 <process:parameterType rdf:datatype="&xsd;#anyURI">
4 &xsd;#float</process:parameterType>
5 </process:Local>
6 </process:hasLocal>

In this section I have described translation of BPEL process model to OWL-S Process
Model ontology. I also described the logic of translation of BPEL activities to OWL-S
CCs on the basis of mapping constraints (discussed in Chapter 4). Translation of some of
BPEL activities to OWL-S CCs have been described with their syntactical information
to describe mapping aspects with respect to their language specifications. The mapped
Process Model ontology can be used to further edit and model more complex service in a
semantic environment (as discussed in evaluation chapter (Chapter 7)).

5.4 Mapping to the OWL-S Profile Ontology

Profile ontology is used to describe semantically enriched information about capabilities
of a BPEL process when it is mapped to OWL-S service. Semantically enriched infor-
mation about capabilities of mapped process model is described as: 1)inputs required by
the service 2) outputs generated by the service 3) pre-conditions required to use a ser-
vice 4) effects that service produces in surrounding world after its execution. Semantics
of these input/output parameters, pre-conditions and effects are provided by annotating
them with domain ontologies defined in a sperate OWL file. Since, BPEL process model
provide no semantic information about a process therefor, Profile ontology parameters of
mapped OWL-S service are automatically annotated by the mapping tool with dummy
ontological concepts (URIs). Also, semantic information about a service capabilities can
vary from user to user therefore, It is not possible to judge a user requirements automat-
ically, generate domain ontologies according to that requirements and annotate Profile

67

ontology parameters with these ontological concepts. Maximum process of generating
Profile ontology from BPEL process is performed automatically by the mapping tool but
end user can provide semantics of mapped service by annotating input/output parameters
of Profile ontology with their required domain concepts. In short user can finish up with
Profile ontology by performing following tasks:

• Developing domain ontologies by using some semantic Web tool (e.g. Protégé).

• Annotating Profile ontology parameters with these domain ontological concepts.

How to develop domain ontologies [60], edit (annotate) and develop SWSs with these
domain ontologies is not the aim of this chapter. However, I explain these topics to some
extent so that the end user can get more clear idea and understanding that how the Pro-
file ontology of mapped OWL-S service can be extended to enable it for semantic based
publishing and discovering. First of all I describe criteria about how I extract a Profile
ontology from a BPEL process model and automatic annotation of Profile ontology pa-
rameters with ontological concepts. Then I give that how end user can extended mapped
Profile ontologies with their required domain ontologies.

5.4.1 Extracting the Profile Ontology

In Section 4.2.3 I have already discussed that primitive activities can have dual behavior:
1) to perform a Web services operations 2) to interact with outer world (i.e. to create
the interface of BPEL process model). Mapping of primitive activities that are used to
perform Web services operations with in a BPEL process has been discussed in Sections
5.3.2 and 5.3.3. Here, we are concerned with primitive activities that can be used to create
interfaces of BPEL process models. A BPEL process can have one or more primitive
activities (i.e. receive, invoke and reply activities) that are used to interact with the
outer world. Such activities are declared as input/output (I/O) activities during mapping
process. Message parts of these I/O activities messages are used to create input and
output parameters of Profile ontology. For example, if a process has a receive activity
which receives a message from the user to start a process then this activity is declared
as I/O activity and message parts of the message received by this activity are used to
create input parameters of resulting Profile ontology. Again, we consider a primitive
activity (<receive>) and its message that has three parts (i.e. inputLang, outputLang
and inputStr as shown in Example 7). These message parts are used to create input
parameters of resulting Profile ontology (as shown in Example 8).

Example 8. An example of mapped Profile ontology.

1 <profile:Profile rdf:about="&bpel4ws2owls#TestProfile">
2 <profile:textDescription>This Profile is created by BPEL2OWLS Tool
3 </profile:textDescription>
4 <profile:hasInput>
5 <process:Input rdf:about="&bpel4ws2owls#inputStr">
6 <process:parameterType rdf:datatype="http://www.w3.org/2001/
7 XMLSchema#anyURI">http://www.w3.org/2001/XMLSchema#string

68

8 </process:parameterType>
9 </process:Input>

10 </profile:hasInput>
11 <profile:hasInput>
12 <process:Input rdf:about="&bpel4ws2owls#inputLang">
13 <process:parameterType rdf:datatype="http://www.w3.org/2001/
14 XMLSchema#anyURI">http://www.w3.org/2001/XMLSchema#string
15 </process:parameterType>
16 </process:Input>
17 </profile:hasInput>
18 <profile:hasInput>
19 <process:Input rdf:about="&bpel4ws2owls#outputLang">
20 <process:parameterType rdf:datatype="http://www.w3.org/2001/
21 XMLSchema#anyURI">http://www.w3.org/2001/XMLSchema#string
22 </process:parameterType>
23 </process:Input>
24 </profile:hasInput>
25 <profile:hasOutput>
26 <process:Output rdf:about="&bpel4ws2owls#TestOutput0">
27 <process:parameterType rdf:datatype="http://www.w3.org/2001/
28 XMLSchema#anyURI">http://www.w3.org/2001/XMLSchema#string
29 </process:parameterType>
30 </process:Output>
31 </profile:hasOutput>
32 <rdfs:label>BPEL2OWLS Profile</rdfs:label>
33 <service:presentedBy rdf:resource="&bpel4ws2owls#TestService"/>
34 </profile:Profile>

A reply activity can be used to send a message to the outer world in response to a
receive activity. If a receive activity has corresponding reply activity then message parts
of the message of such reply activity are used to create output parameters of mapped
Profile ontology. In sample Profile ontology given above (Example 8), we have an output
parameter return which is part of the message received by reply activity used in the
process to send output of the process to the outer world (Appendix A).

It is also possible that a receive activity do not has corresponding reply activity (as
you can see in sample BPEL processes available with tool download) and BPEL process
uses invoke activity to send output message to the outer world (as shown below).

1 <invoke partnerLink="Output_Port"
2 portType="q1:Output_PortType_1" operation="Operation_1"
3 inputVariable="Message_1_From_Dic_Service" />

In this case message (Message 1 From Dic Service) of the invoke activity is parsed in
corresponding WSDL file and its message parts are used to create output parameters of
Profile ontology of the mapped OWL-S service.

69

Till now I have explained that how primitive activities are used to create interface of
BPEL process and how we use message parts of these I/O activities to create input/output
parameters of mapped Profile ontology. One more thing that need to be clarified is that
among dual role of BPEL primitive activities how a primitive activity is declared as an
I/O activity so that its message parts can be used to create input/output parameters of
Profile ontology? The critaria used for this purpose is that if a receive activity is being
used as an initial activity to start a process (i.e. its createInstance attribute value is yes)
and its portType and operation is supported by BPEL’s corresponding WSDL file, then
it is declared as an I/O activity.

Another thing that I think is important to highlight here is that mapping specifications
support to extract one Profile ontology from a BPEL process model. It means that
if a BPEL process has multiple activities which act as an interface of BPEL process,
only two primitive activities are declared as I/O activities and their message parts are
used to create input/output parameters of Profile ontology of mapped OWL-S service.
Even though OWL-S specifications support to create multiple Profile ontologies for one
Process Model ontology but automatic mapping from BPEL process model to OWL-S
suite extracts one Profile ontology for one Process Model ontology.

5.4.2 Annotating Profile Ontology Parameters

In previous section (Section 5.4.1), I have described in detail that how a Profile ontology
is extracted from a BPEL process model. If we have a deeper look at sample Profile
ontology (Example 8) provided in previous section, we see that input/output parameters
of Profile ontology are mapped to dummy URIs. These dummy URIs need to be replaced
with user defined domain ontologies (Figure 5.2 provides a conceptual view of annotating
Profile ontology parameters with domain ontological concepts). Such annotation provides
semantically enriched information about capabilities of mapped OWL-S service.

Figure 5.2: Annotating Profile ontology with domain ontology concepts.

As discussed above that OWL-S specifications support to define multiple Profile on-
tologies for one Process Model ontology therefore, end user can also define multiple Profile
ontologies for one Process Model ontology of mapped OWL-S service to provide different
meaning of same service. Protégé with its OWL plugin [65] is an ideal framework for
developing domain ontologies. Example 9 provides a simple example of the Language

70

ontology that we can use to annotate input/output parameters of our mapped Profile
ontology to provide semantically enriched information of OWL-S service.

Example 9. Sample Language ontology.

1 <owl:Class rdf:ID="SupportedLanguage">
2 <rdfs:comment>Languages supported by the BabelFish translator is
3 an enumerated set of the following languages</rdfs:comment>
4 <owl:oneOf rdf:parseType="Collection">
5 <factbook:Language rdf:about="&factbook;#English"/>
6 <factbook:Language rdf:about="&factbook;#German"/>
7 <factbook:Language rdf:about="&factbook;#French"/>
8 <factbook:Language rdf:about="&factbook;#Dutch"/>
9

10 (list of supported languages)
11 </owl:oneOf>
12 </owl:Class>
13

14 <owl:ObjectProperty rdf:ID="canBeTranslatedTo">
15 <rdfs:comment>The relation that tells which language can be
16 translated to which language</rdfs:comment>
17 <rdfs:domain rdf:resource="#SupportedLanaguage"/>
18 <rdfs:range rdf:resource="#SupportedLanaguage"/>
19 </owl:ObjectProperty>
20

21 <rdf:Description rdf:about="&factbook;#English"><canBeTranslatedTo
22 rdf:resource="&factbook;#German"/></rdf:Description>
23 <rdf:Description rdf:about="&factbook;#English"><canBeTranslatedTo
24 rdf:resource="&factbook;#French"/></rdf:Description>
25

26 (list of supported languages)

Suppose that above language ontology is defined at following address
http://bis.informatik.uni-leipzig.de/LanguageOntology.owl (shortly ”&Languages”).
Then the mapped Profile ontology (as show in Example 8) after annotating its
parameters with domain ontology looks like:

1 <profile:Profile rdf:about="&bpel4ws2owls#TestProfile">
2 <profile:textDescription>This Profile is created by BPEL2OWLS Tool
3 </profile:textDescription>
4 <profile:hasInput>
5 <process:Input rdf:about="&bpel4ws2owls#inputStr">
6 <process:parameterType rdf:datatype="http://www.w3.org/2001/
7 XMLSchema#anyURI">&languages#SupportedLanguage
8 </process:parameterType>
9 </process:Input>

71

10 </profile:hasInput>
11
12 (other input/output parameters)
13

14 <rdfs:label>BPEL2OWLS Profile</rdfs:label>
15 <service:presentedBy rdf:resource="&bpel4ws2owls#TestService"/>
16 </profile:Profile>

5.5 Mapping to the OWL-S Grounding Ontology

Grounding ontology of the OWL-S service describes how to access a service. Access de-
tails described in Grounding ontology include information about protocol, transport and
message formats. These details enable Grounding to provide concrete level specifications
needed to access a service. Concrete level definition of inputs/outputs of atomic processes
in some transmittable format is provided in Grounding ontology. For this purpose original
WSDL services are referred in Grounding to access real implementation of service. When
a Web service operation with in a BPEL process is mapped to OWL-S atomic process
(during the mapping process) then input/output messages of Web service operation are
defined as set of inputs/outputs in the Grounding ontology of that atomic process. That’s
why in Section 5.4 we have seen that input/output messages of I/O activities are not di-
rectly used to create Profile ontology but message parts of these messages are used as
set of inputs and outputs in Profile ontology. These inputs and outputs when annotated
with domain ontologies, provide Web service semantics.

Now about types of messages and message parts: there are two possibilities 1) the
message is a complex message of some OWL class type 2) the message is of other usual
data type (e.g. string, int etc.). In first case, in which message is of some OWL class
type, we need to give the definition of OWL class. This definition can be given with in
the same document3 or can be defined in separate OWL file and can be referred in the
type parameter4.

An OWL-S service Grounding is an instance of the Grounding class which has sub class
WsdlGrounding. Each WsdlGrounding class contains a list of WsdlAtomicProcessGround-
ing instances which refers to Grounding of atomic process. WsdlAtomicProcessGrounding
has properties (e.g. wsdlInputMessage, wsdlInput, wsdlOutputMessage, wsdlOutput etc.).
A wsdlInputMessage and wsdlOutputMessage objects contain mapping pairs for message
parts of WSDL input/output messages and is presented by using an instance of WsdlIn-
putMessageMap. If a message part is of some complex type (e.g. some OWL class) then
XSLT Transformation property gives an XSLT script that generates message part from
an instance of the atomic process. As an example consider grounding (as shown in sample
code below) of mapped OWL-S service (Appendix C).

1 <grounding:WsdlGrounding rdf:about="&bpel4ws2owls#TestGrounding">

3http://www.mindswap.org/2004/owl-s/services.shtml BabelFish Translator service provide such ex-
ample

4http://www.mindswap.org/2004/owl-s/services.shtml Find Cheaper Book Price service provide such
example

72

2 <service:supportedBy rdf:resource="&bpel4ws2owls#TestService"/>
3 <grounding:hasAtomicProcessGrounding rdf:resource="&dummyURI
4 #getTranslationAtomicProcessGrounding"/>
5 <grounding:hasAtomicProcessGrounding rdf:resource="&dummyURI
6 #getMeaningAtomicProcessGrounding"/>
7 </grounding:WsdlGrounding>

The above sample code gives an example of grounding of mapped compos-
ite service (i.e. TestService), where getTranslationAtomicProcessGrounding and get-
MeaningAtomicProcessGrounding are groundlings of two atomic processes (i.e. getTrans-
lationAtomicProcess and getMeaningAtomicProcess) which are sub processes with in
mapped composite process. I have described in detail in Section 5.3.2 that Web ser-
vices operations with in a BPEL process model are mapped to OWL-S atomic processes
and the mapped OWL-S composite service is semantic based composition of these atomic
processes. The sample code given below provides an example of Grounding ontology of
the getTranslationAtomicProcess atomic process (Appendix B).

1 <grounding:WsdlGrounding rdf:about="#getTranslationGrounding">
2 <grounding:hasAtomicProcessGrounding>
3 <grounding:WsdlAtomicProcessGrounding
4 rdf:ID="getTranslationAtomicProcessGrounding"/>
5 </grounding:hasAtomicProcessGrounding>
6 <service:supportedBy rdf:resource="#getTranslationService"/>
7 </grounding:WsdlGrounding>
8

9 <grounding:WsdlAtomicProcessGrounding rdf:about="
10 #getTranslationAtomicProcessGrounding">
11 <grounding:wsdlInputMessage rdf:datatype="http://www.w3.org/2001/
12 XMLSchema#anyURI">&wsdlFileAddress#TranslatorRequest
13 </grounding:wsdlInputMessage>
14 <grounding:wsdlInput>
15 <grounding:WsdlInputMessageMap>
16 <grounding:wsdlMessagePart "http://www.w3.org/2001/
17 XMLSchema#anyURI">&wsdlFileAddress#inputLanguage
18 </grounding:wsdlMessagePart>
19 <grounding:owlsParameter rdf:resource="&wsdlFileAddress
20 #inputLanguage"/>
21 </grounding:WsdlInputMessageMap>
22 </grounding:wsdlInput
23
24 (other message parts)
25 </grounding:WsdlAtomicProcessGrounding>

73

5.6 Summary

To this end, bridging the semantic gap between business process modeling languages and
semantic Web services becomes more important to keep existing business processes alive
with upcoming semantic Web service technologies. In this chapter I have presented a map-
ping strategy that can be used to bridge the semantic gap between BPEL process models
and SWSs by translating BPEL process descriptions to complete OWL-S suite of ontolo-
gies. Such approach helps in business process automation as dynamic and automated
composition of business processes as OWL-S services. Extraction of OWL ontologies (i.e.
Profile, Process Model and Grounding ontologies) have been described individually. I
have implemented the above discussed mapping strategy as a tool that can be used to
map BPEL processes to OWL-S services (as discussed in next chapter (Chapter 6)). Crit-
ical mapping issues (e.g. mapping of condition statements, translating BPEL activities
to OWL-S CCs, generating Profile ontology parameter from complex I/O messages etc.)
have been addressed by implementing efficient parsing and mapping algorithms.

Profile ontology of mapped OWL-S service can be annotated with user defined domain
ontologies to describe service semantics. This Profile ontology of mapped OWL-S service
can be used to expose semantically enriched interface of BPEL process model as OWL-
S service. Computer agents can discover BPEL processes as OWL-S services on the
basis of matching semantics (i.e. matching Profile ontology). Process Model ontology of
mapped OWL-S service defines the control and data flow between child atomic processes
on the basis of matching semantics and can be used to edit the composition on the basis
of matching semantics of sub atomic and composite processes to model more complex
services.

OWL-S specifications does not provide CCs for all activity of BPEL processes. Due
to these limitations I have also highlighted different areas where direct mapping of BPEL
activities to OWL-S CCs is not supported (as described in mapping specifications (Table
5.1)). In order to implement direct translations of BPEL activities (e.g. terminate, fault
handling etc.) we need more consistent specifications of OWL-S to address these issues.
I have also highlighted areas where inputs from end user are required (e.g. changing
parameter types by annotating input/output parameters with domain ontologies etc.).

74

Chapter 6

Prototype Implementation

In this chapter I present prototype implementation of the approach presented in this
thesis. The prototype is the main tool (i.e. BPEL4WS 2 OWL-S Mapping Tool1) that
provides ways to verify applicability and evaluation of proposed approach. BPEL4WS
2 OWL-S Mapping Tool can be used to map existing business processes (i.e. BPEL
processes) to complete OWL-S suite of ontologies. The tool also supports the mapping
of individual Web services operations with in a BPEL process model to OWL-S atomic
processes.

6.1 Introduction

Implementation of the BPEL4WS 2 OWL-S Mapping Tool is an important contribution
of this thesis which can be used to enable business processes with semantics by mapping
BPEL processes to OWL-S suite of ontologies so that BPEL processes can be dynamically
discovered, invoked and composed as OWL-S services by other semantic enabled systems.
An OWL-S service can not be discovered dynamically as long as it does not expose its
semantically enriched interface as Profile ontology. Similarly, the Process Model ontology,
as described before, is a workflow like language that can be used to define composition of
multiple atomic and composite processes on the basis of matching semantics. The Process
Model ontology of OWL-S suite can also be edited to model more complex service that can
perform a required task. The Grounding ontology actually describes how to interact with
an OWL-S service (i.e. message format, protocol etc.). Therefore, mapping BPEL process
models only to Profile or Process Model ontologies can not enable business processes to
be dynamically discovered, invoked and composed. Hence, to enable business processes
for dynamic discovery, invocation and composition a tool should support the mapping of
BPEL process to complete OWL-S suite of ontologies.

BPEL4WS 2 OWL-S Mapping Tool is capable of mapping BPEL processes to complete
OWL-S suite of ontologies (i.e. Profile, Process Model and Grounding ontologies). Each of
the Profile, Process Model and Grounding ontologies are stored in separate OWL files for

1http://bpel4ws2owls.sourceforge.net/

75

their individual uses as well as the complete OWL-S service of mapped BPEL process is
also stored in a separate OWL file. Another important feature of the mapping tool is that
not only the business process but all Web services operations with in a BPEL process
are mapped to OWL-S atomic processes with Profile, Process Model and Grounding
ontologies and are stored in separate OWL files (as shown in Figure 5.1). These mapped
atomic processes can also be used by OWL-S execution engines (e.g. OWL-S API) to
be executed individually or to use with other composite services. BPEL4WS 2 OWL-S
Mapping Tool is an open source project and has hundreds of downloads since the time it
has been uploaded on the open source project directory (sourceforge.net).

The remaining chapter is organized as follows: Section 6.2 provides an overview of
the work that has already been done by other research groups in this area so that we
can compare the approach presented in this thesis with these already presented research
works and to compare that how my approach and implemented tool is better than already
existing approaches and tools. Important features of BPEL4WS 2 OWL-S Mapping Tool
have been described in Section 6.3. Section 6.4 describes implementation of the mapping
tool. General usage of the tool has been discussed in Section 6.5. Section 6.6 summarizes
this chapter.

6.2 Related Work

Semantic enhancements in Web service technology and bridging the semantic gap between
business processes and SWSs is increasingly important for interaction between business
services and processes in a dynamic and automated fashion. Several efforts have already
been done to address semantic limitations of process modeling languages. For example,
the METEOR-S research group at LSDIS Lab is working on extending BPEL to compose
Web services (WSDL-S services) on the basis of matching semantics. The work discussed
in [88, 93] describes mapping of BPEL process model to OWL-S Process Model ontology. I
have already criticized and pointed out drawbacks of this approach in my work [22]. Major
drawbacks of [88, 93] are that they do not support Profile and Grounding ontologies. As
I have already discussed before that without Profile ontology, process model of mapped
OWL-S service can not be advertised, discovered, invoked and composed dynamically by
other services. The work discussed in [80] describes a good effort to map WSDL services
to DAML-S (updated to OWL-S) services.

Another effort [54] has been done by a joint group of researchers from University
of Edinburgh and School of Informatics to address semantic limitations of Fundamental
Business Process Modeling Language (FBPML) by mapping it to OWL-S Process Model
ontology. The work discussed in [54] also supports only mapping of FBPML process
model to OWL-S Process Model ontology. It does not support mapping of Profile and
Grounding ontologies. The work discussed in [54] has almost same limitations as that
of the work discussed in [88, 93] that I have already criticized in my work [22, 21]. We
can summarize that there have many efforts been done to address semantic limitations
of process modeling languages by mapping them to semantic Web service languages (e.g.
OWL-S) but none of these efforts provide expressive and consistent solution. My work
is unique with respect to its support for mapping of BPEL process model to complete
OWL-S suite of ontologies and that it addresses some critical issues (e.g. conditions

76

mapping, support for complex messages, mapping of atomic processes etc.) that have not
been addressed by any other research group. Another uniqueness of my work is that I
have implemented the use of OWL-S API in my tool to write resulting OWL-S service.
It makes the overall architecture of the tool and its implementation more consistent with
other SWS development tools (e.g. OWL-S Editor) and execution engines (e.g. OWL-S
API).

6.3 Features of BPEL4WS 2 OWL-S Mapping Tool

In previous section (Section 6.2) I have discussed some efforts that have been done to
bridge the semantic gap between process modeling and SWS languages by establishing
a mapping between them. Limitations and drawbacks of these existing efforts have also
been highlighted in Section 6.2. I have also described in my work [22, 21] that how
my approach is better as compare to these existing approaches and how the proposed
mapping tool provides more consistent and efficient solution to the prescribed problem.
Here, I describe some features of the mapping tool that make this work unique, more
consistent and more useful for process modeling and SWS community with respect to
other approaches and tools that have already be discussed in Section 6.2.

Support for Complete OWL-S Suite. Since, OWL-S is suite of OWL ontologies
(Profile, Process Model and Grounding ontologies) and each ontology has a specific
role in making the SWS vision functional (i.e. dynamic and automated discovery,
invocation and composition) therefore, fruitful mapping of BPEL process model to
OWL-S needs mapping of BPEL processes to complete OWL-S suite of ontologies.
To achieve this goal BPEL4WS 2 OWL-S Mapping Tool supports the mapping of
a BPEL process to complete OWL-S suite of ontologies.

Atomic Processes. As I discussed in Section 6.2 that for semantic based composition
of Web services each operation with in a BPEL process should be mapped to OWL-
S atomic process so that these atomic processes can be used for semantic based
composition with in mapped composite process. These atomic processes (like Web
services operations with in a BPEL process) are used to perform small tasks with
in whole mapped composite service. BPEL4WS 2 OWL-S Mapping Tool supports
the mapping of each Web service operation involved with in BPEL process model
to OWL-S atomic process.. Atomic processes created during the mapping process
are according to WSDL2OWL-S (by MINDSWAP Labs) standards and can be used
with other composite services and executed by execution engines (e.g. OWL-S API
).

Execution. Mapped OWL-S composite service and atomic processes with in composite
process should be executable by some execution engine (e.g. OWL-S API). Since,
I have implemented the use of OWL-S API in my tool therefore, resulting atomic
and composite processes can be executed by OWL-S API.

Efficiency. Mapping of complex business processes with defined control and data flow
can affect efficiency of the mapping tool. Parsing and mapping of complex BPEL

77

processes, WSDL services, condition statements, control and data flow etc. has
been well addressed by using fast and efficient parsing and mapping algorithms.

Easy to Use. Rapid adaption of the mapping tool depends on how easily and efficiently
it can be used by end users. Keeping in mind from end user’s perspective, an easy to
use interface has been provided and mapping of a BPEL process to OWL-S service
can be completed in few steps (as shown in Figure 6.3).

Deployable Services. Mapped OWL-S services can be further edited to model more
complex services and deployed on SWS registries which support SWS publications
according to OWL-S standards. Such services can be discovered on the basis of
matching semantics and can be dynamically composed by other semantic enabled
applications and services.

Standards Support. Standards support is another important aspect of mapping strat-
egy to make this work more useful for process modeling and SWS development com-
munity. BPEL4WS 2 OWL-S Mapping Tool supports the industry wide accepted
standard (i.e. BPEL4WS 1.1, WSDL 1.1 and OWL-S 1.1) for better compatibility
with other process modeling and SWS development tools.

Extensibility. BPEL4WS 2 OWL-S Mapping Tool is an open source project and pro-
vides a rich and easy to extend set of classes. It can easily be extended with up-
coming OWL-S specifications and can be integrated with other SWS development
tools. For example, I am working on extending and integrating it as BPEL4WS
2 OWL-S Import Plugin for Protégé (OWL-S Editor) that will help end users to
directly import BPEL processes to SWS development environment (i.e. Protégé
(OWL-S Editor)).

Implementation of a tool with above described features helps not only to over come
limitations of previous works done in this direction by other research groups but also to
provide a tool which is more consistent with upcoming technology standards and latest
process modeling and SWS development tools. Next section describes implementation of
the mapping tool in detail.

6.4 Implementation

BPEL4WS 2 OWL-S Mapping Tool is implemented in JAVA being a platform indepen-
dent language that is used by most of the research and development community world
wide. Since, mapping tool is an open source project therefore, it can be used by other
research groups to be extended with upcoming versions of OWL-S for better and more
consistent mapping as well as in upgrading their existing systems with semantic support
(e.g. SwinDew (a peer-to-peer workflow management system) is upgraded to SwinDew-S)
[91, 94, 89]. Another important thing in implementation of the tool is its compatibility
with other SWS community tools and applications (e.g. Protégé (OWL-S Editor), OWL-S
API etc.).

OWL-S API provides a set of Java APIs for programmatic access to read, write and
execute OWL-S services and is developed and maintained by Evren Sirin at MINDSWAP

78

Lab. Major SWS development tools (e.g. OWL-S Editor) also uses OWL-S API as
an execution engine to execute OWL-S services developed in OWL-S Editor. OWL-S
API provides an execution engine that can invoke atomic processes that have WSDL
or Universal Plug and Play Language (UPnP) [4] groundings, and composite processes
that uses OWL-S control constructs (e.g. Sequence, Split etc.) [96]. OWL-S’s exchange
syntax is RDF/XML and many processors work with an RDF based model, in part,
to facilitate the smooth integration of OWL-S service descriptions with other Semantic
Web knowledge bases. However, working with the RDF triples directly can be quite
cumbersome and confusing and the OWL-S API was designed to help programmers to
access and manipulate OWL-S service descriptions programmatically [96]. I have also
implemented the use of OWL-S API in my tool to write OWL-S services, for BPEL process
models, according to mapping specifications discussed in Chapter 5. Use of OWL-S API
make it more easy to integrate my tool with other SWS development tools (e.g. OWL-S
Editor).

6.4.1 Architecture

Overall architecture of the BPEL4WS 2 OWL-S Mapping Tool consists of three compo-
nents (i.e. WSDL Parser, BPEL Parser and OWL-S Mapper) as shown in Figure 6.1.
Since, overall functionality of the tool consists of two major steps (i.e. parsing and map-
ping) therefore, parsing and mapping components work together by passing their inputs
and outputs to each other. Here, I describe functional description of these components
in detail.

WSDL Parser. As it is clear from name that WSDL Parser parses each WSDL file with
in a mapping project and creates their object views. An important feature of WSDL
Parser is that it extracts information about operations supported by Web services and
sends their information to OWL-S Mapper which maps each Web service operation to
OWL-S atomic process. OWL-S Mapper writes atomic process descriptions in separate
OWL files and saves them in atomic processes directory of mapping project.

BPEL Parser. BPEL Parser traverses through the input BPEL file and creates object
view of a process activities. It parses primitive activities and sends information about
these activities to OWL-S Mapper. Before sending information to OWL-S Mapper, BPEL
Parser declares either a primitive activity is an I/O activity or not (Section 5.4 describes
in detail that how an activity is declared and mapped as an I/O activity). If a primitive
activity is declared as an I/O activity then OWL-S Mapper uses message parts of this ac-
tivity to create input/output parameters of composite process which are ultimately used
to create the Profile ontology parameters. If a primitive activity is non I/O activity then
OWL-S Mapper maps it to Perform CC to perform related atomic process. Also, the
BPEL Parser parses structured activities with in BPEL process and sends information
about these activities to OWL-S Mapper. The OWL-S Mapper translates them to rel-
evant CCs to define control flow of mapped OWL-S composite service. If BPEL Parser
sends information to OWL-S Mapper about Assignment activity then OWL-S Mapper
traverse through list of existing atomic processes to extract input/output parameters of

79

Figure 6.1: Architecture of the BPEL4WS 2 OWL-S Mapping Tool.

these processes, matches them with <copy>, <to> and <copy>, <from> parameters
of Assignment activity and creates data flow between relevant process components. If
a BPEL Parser comes to a conditional structured activity during parsing process then
it simply sends conditional activity (e.g. Switch, While etc.) and condition string to
OWL-S Mapper, which maps it to corresponding OWL-S CC and SWRL expression (as
explained in Section 5.3.5) and use it with OWL-S CCs (e.g. If-Then-Else, Repeat-While
etc.).

OWL-S Mapper. OWL-S Mapper is actually responsible for writing resulting OWL-S
service according to defined mapping specifications. It uses the OWL-S API to write
resulting OWL-S composite service. Since, OWL-S API uses a third party reasoner (i.e.
jena reasoner) to reason the mapped OWL-S ontology therefore, my tool also uses jena
reasoner (as default reasoner) for such reasoning purposes. OWL-S Mapper actually
consist of classes that write OWL-S services by using local class structures or by using
OWL-S API classes for OWL-S specifications.

6.4.2 User Interface

BPEL4WS 2 OWL-S Mapping Tool provides an easy to use interface which consists of
four major parts (i.e. Project Explorer, Object Explorer, Content Window and Output
Window), a Toolbar and a Menu bar as shown in Figure 6.2.

Project Explorer can be used to see project input and output files (i.e. input BPEL
file, WSDL files (Master and Slave WSDL files), OWL files of mapped OWL-S suite of
ontologies and OWL files of mapped OWL-S atomic processes). Object Explorer provides
object view of input BPEL and WSDL files. We can look through input BPEL and WSDL
files in a tree view control in Object Explorer. Traversing though tree view of input BPEL
file also helps to find the sequence of activities with in a BPEL process model. Content
window can be used to see contents of any of the input BPEL file, WSDL files and

80

mapped OWL files. User can simply select a file in the Project Explorer and tool will
open contents of the file in Content Window. Output of different actions performed (e.g.
Validate, Build and Map) can be seen in Output Window.

Figure 6.2: Overview of BPEL4WS 2 OWL-S Mapping Tool.

6.5 General Usage

The overall mapping process (as show in Figure 6.3) starts by creating a new project. As
an input of the project, tool requires a BPEL file of the process and its corresponding
WSDL file (I call it Master WSDL file (M-W)). As I discussed before, that a BPEL
process is composition of Web services operations therefore, all Web services WSDL files
(I call Web service WSDL file as Slave WSDL file (S-W)) involved in BPEL process are
provided as an input of the mapping project. Then these input files are validated by
performing validation operation.

Once input files are validated by the tool, next step is to build the project with
these input files. Building a project is an important step because it parses BPEL and
WSDL files and extracts information about all activities of a process and Web service
operations involved in a BPEL process model. This information is used to create object
view of activities and components of BPEL process and WSDL services. During mapping
process this information is used to write resulting OWL-S service. As a last step, process is
mapped to OWL-S, which results in four OWL files (i.e. Service, Profile, Process Model
and Grounding ontologies files) and OWL file which contains complete suite of OWL
ontologies. This OWL file can be used to execute by execution engines (e.g. OWL-S
API). Also, during the mapping process each Web service operation is mapped to OWL-S

81

Step Menu Item Short Key

1 Create New Project File->New->Project Ctr+p
2 Add BPEL File Project->Add->BPEL File Alt+b
3 Add Master WSDL File Project->Add->M-W Alt+w
4 Add Slave WSDL File Project->Add->S-W Alt+w
5 Validate Project Project->Validate Ctr+v
6 Build Project Project->Build Ctr+b
7 Map Project Tools->Map->OWL Ctr+m

Figure 6.3: Sequence of steps (with menu items and short keys) to perform a mapping
task.

atomic process and stored in a separate OWL file which is used to perform sub process
with in OWL-S composite service.

6.6 Summary

BPEL4WS 2 OWL-S Mapping Tool is an easy to use tool that can be applied by process
modeling and SWS development communities to map existing business processes (BPEL
processes) to OWL-S services. The mapping tool discussed in this chapter make it easy
to enable existing business processes with semantics rather than to build these processes
as composite services in a SWS development environment (e.g. Protégé (OWL-S Editor))
from scratch. Its support for industry wide accepted standards and easy to use interface
make it a tool of choice for end users. Compatibility and extensibility features of the
mapping tool resulted in more interest of the semantic Web and SWS research and de-
velopment communities in this work. Large projects (e.g. SwinDew) and semantic Web
and SWS development tools (e.g. Protégé and OWL-S Editor) have shown their interest
in this work. I have also collaborated with SwinDew (a peer-to-peer workflow manage-
ment system) research and development team on enhancing SwinDew to SwinDew-S by
enabling it with semantic support by shifting existing business processes to OWL-S ser-
vices. OWL-S Editor team has also shown their interest in this work by pointing out
need for a tool that can be used to directly import BPEL processes in to OWL-S Editor
as OWL-S services. I am currently in touch with OWL-S Editor team in making the tool
available as BPEL4WS 2 OWL-S Import Plugin for Protégé (OWL-S Editor).

82

Chapter 7

Evaluation

In this chapter I provide an evaluation of the approach presented in this thesis by an-
swering research questions that I highlighted in Chapter 1. Most of the results of this
thesis that I use to answer research questions have been published in international work-
shops and conferences. Even though previous chapters provide detail answers of research
questions as my research contributions but here I would like to summarize them for the
purpose of evaluation. After answering the research questions I provide an evaluation
of the proposed approach by answering and evaluating the overall research question (as
already described in Section 1.3).

The remaining chapter is organized as follows: In Section 7.1 I summarize answers
to the research questions that I raised in Section 1.3. Section 7.2 takes an evaluationary
revision of the example scenario (as discussed in Section 1.2) for the purpose of evaluation
of the proposed approach. Answer to the main research question and its evaluation is
described in Section 7.3. Section 7.4 summarizes this chapter.

7.1 Answers to Research Questions

The overall research question that I described in Chapter 1 is:

How existing business processes can be shifted from a syntax based to semantic
based environment to enable them for semantic based composition editing, modeling and
dynamic discovery, invocation and composition by other semantic enabled systems?

The main research question has been answered in small research contributions. To
answer the main research question and to evaluate my work, first, I provide answers of
small research questions that I raised in Section 1.3 and then I describe my overall re-
search contribution for bridging the semantic gap between business processes and SWSs
to shift existing business processes from a syntax based to semantic based environment.
The overall system for shifting existing business processes from a syntactical to semantic
based environment consists of theoretical concepts, approaches and their prototypical im-
plementation. For example, a new 4-tier SWS integration architecture has been presented

83

in Chapter 3 that addresses architectural requirements for business process integration as
SWSs composition. A life cycle for SWS composition and a framework for dynamic and
automated composition of Web services has also been discussed in Chapter 3. Bringing
these theoretical concepts at more concrete level, I presented an approach that can be
used to establish correspondence between syntax based and semantic based composition
of Web services (as discussed in Chapter 4). I have also presented mapping specifications
and algorithms that can be used to map BPEL processes to OWL-S services (as discussed
in Chapter 5). An implementation of these theoretical concepts and approaches has been
described in Chapter 6.

By using these research contributions, here, I answer to the small research questions
which helps to understand and to evaluate the main research contribution.

RQ 1. What Web service is and how we can provide Web service semantics?

– Web services are viewed as platform independent reusable applications that
provide a standard means of interoperating between different software appli-
cations, running on a variety of platforms and/or frameworks. Web service
related standards (i.e. SOAP, WSDL and UDDI) make it accessible and invo-
cable over a variety of platforms.

– Different SWS languages (e.g. WSDL-S, WSMO and OWL-S) have been
viewed and discussed in Chapter 2 for the purpose of adding semantics to
Web services. Capabilities and limitations of these SWS languages have been
discussed which help to evaluate these languages. I have provided a compari-
son of these SWS languages and proved that semantic and workflow modeling
capabilities of OWL-S are much better as compare to other SWS languages.
That’s why I have choosed OWL-S as SWS language that can be used to
overcome semantic limitations of BPEL.

RQ 2. Is existing application integration architecture and framework enough for semantic
based dynamic integration and composition of business processes as SWSs?

– I have discussed different approaches for dynamic and automated Web ser-
vices composition that have been presented both from process modeling and
AI communities. Even though these approaches are good initiative towards
SWS composition but I have pointed out some requirements that need to be
addressed for semantic based integration and composition of business processes
as SWSs in real world scenarios. I also evaluated some existing dynamic and
automated Web service composition approaches with respect to these require-
ments and proved that none of existing approach address all of these SWS
composition requirements. As a solution of these issues, I have presented a
dynamic and automated Web services composition framework at an abstract
level.

– Limitations of traditional 3-tier application integration architecture have been
discussed in detail in Chapter 3. I also proposed a new 4-tier SWS integration
architecture (as discussed in Section 3.4) that addresses syntactical limitations
of traditional 3-tier application integration architecture. The newly proposed

84

4-tier architecture helps to meet semantic based dynamic Web service integra-
tion and composition requirements.

– Modeling Web services composition at design time or to dynamically discover
and compose required services needs Web services composition (workflow) to
be available in a machine executable language (e.g. BPEL or OWL-S Process
Model ontology). In such a workflow, management people can add business and
management rules with in composition and technical people can use them to be
implemented in language that is processable and understandable for machines.
For such a collaborative work between business and technical people I have
presented a SWS integration and composition life cycle (discussed in Section
3.5) which brings all SWS related efforts in one circle.

RQ 3. How correspondence can be established between syntax and semantic based com-
position of Web services (i.e. BPEL process model and OWL-S composite service)?

– As, I discussed before that I have evaluated different SWS languages and com-
parison of these SWS languages shows that OWL-S has more expressive seman-
tics and workflow modeling capabilities as compare to other SWS languages. I
have also elaborated my approach to semantically enrich business processes by
expressing business process models (e.g. BPEL process models) as OWL-S ser-
vices which are semantic based compositions of Web services. Furthermore, in
Chapter 4, I have described that different OWL-S control constructs (CCs) can
be used to define control flow between child processes with in whole composite
service.

– Process Model ontology of OWL-S suite is used in the whole process of estab-
lishing correspondence between workflow modeling capabilities of (BPEL) and
SWS language (OWL-S). Process Model ontology of OWL-S suite can be used
to model the composition of multiple services (atomic and composite) on the
basis of their matching semantics. Different OWL-S CCs (e.g. Sequence, Flow
etc.) can be used to define control flow between child atomic and compos-
ite processes with in whole OWL-S composite service. Semantically enriched
interface of BPEL process is expressed as Profile ontology of OWL-S suite.

RQ 4. How a BPEL process model can be mapped and expressed as OWL-S SWS?

– In chapter 4, I have described in detail that activities of a BPEL process
that interact with outer world are used to create interface of mapped OWL-
S service. Also, messages of these activities are used to create input/output
parameters of the mapped OWL-S service. These input/output parameters
are automatically annotated by the mapping tool with dummy ontological
concepts. These dummy ontological concepts can be changed with user defined
domain ontologies to expose semantically enriched interface as Profile ontology
of mapped OWL-S service. This Profile ontology is used by other semantically
enriched systems to dynamically discover a business process as OWL-S service.

– It is discussed in detail in Chapters 5 and 6 that a BPEL process is parsed by
BPEL Parser to create object view of BPEL process. Activities with in this

85

object tree of BPEL process are sent to OWL-S Mapper to create control flow
of composite process with in Process Model ontology of mapped OWL-S com-
posite service. BPEL structured activities are mapped to OWL-S CCs to define
control flow and primitive activities are used to create the interface of mapped
OWL-S service or to perform sub atomic processes with in mapped OWL-S
composite process. Process Model ontology of mapped OWL-S service can be
used to edit the composition of services in a semantic enabled environment to
model more complex service to perform required tasks.

– Interaction protocol and messages exchanged between partner services are de-
scribe in Grounding ontology of mapped OWL-S service. The mapping tool
extracts information about messages of Web services operations used in BPEL
process model and describes them as inputs and outputs of atomic and com-
posite processes of mapped OWL-S service. As discussed before in Section
5.5 that it is not possible to automatically write XSLT scripts for XSL Trans-
formation of complex Web services messages and end user has to put some
manual efforts in this area.

RQ 5. Is translation of BPEL process models to OWL-S ontologies can help for semantic
based discovery, invocation and composition of BPEL processes as OWL-S services?

– When a BPEL process model is mapped to OWL-S suite of ontologies, the
Profile ontology of mapped OWL-S service can be used for reasoning purposes
by computer agent to dynamically discover a BPEL process as OWL-S service
on the basis of matching Profile ontology. Input/output parameters of Profile
ontology of mapped OWL-S service, when annotated with domain ontologies,
provide universally unique meaning to expose a service capabilities. These
universal meanings of input/output parameters pre and post conditions of a
service make a Web service capabilities understandable for machines.

– Once a BPEL process is mapped to OWL-S service, different execution engines
(e.g. OWL-S API) can be used for its execution.

In this section I summarized answers to the research questions raised in Chapter 1 and
also referenced to other chapters where readers can find further conceptual and technical
details about how a specific research question has been answered. Before summarizing
the answer to the main research question and to evaluate the proposed approach we first
have an evaluationary revision of the motivational scenario discussed in Section 1.2. It
will help not only to recall that what the main problem was but also to understand that
how the proposed research approach addressesg the problem.

7.2 Motivational Scenario: An Evaluationary Revision

For evaluation purpose, here, we have an evaluationary revision of the problem scenario
(motivational scenario discussed in Section 1.2) and see that how the approach presented
in this thesis and its prototypical implementation answers the overall research question i.e.

86

How existing business processes can be shifted from a syntax based to semantic
based environment to enable them for semantic based composition editing, modeling and
dynamic discovery, invocation and composition by other semantic enabled systems?

In Section 1.2 I highlighted two problem tasks (as shown in Figures 1.1 and 1.2). For
the first problem task (as shown in Figure 1.1) I modeled a BPEL process in MS BizTalk
Server as syntax based composition of Web services. Then I pointed out that such a
syntax based Web services composition (process) has following limitations:

1. When such process is exported as a Web service, it has same syntactical limita-
tions as traditional WSDL service resulting in clampdown of process for dynamic
discovery, invocation and composition.

2. If we want to extend (edit) the process (discussed in first scenario (Figure 1.1)) in
a semantic environment (i.e. to edit and model the composition on the basis of
matching semantics) to perform the task defined in second scenario (Figure 1.2)
then we will realize that:

(a) Web services with in composition provide no information for semantic based
editing and modeling of process.

(b) Semantic limitation of Web services with in process restrict to dynamically
discover and compose (on the basis of matching semantics) other SWSs (e.g.
semantically matching Translator service).

If I describe these problem at more concrete level and with more precise wording then
I can define it as:

1. How we can expose semantically enriched interface of a process to enable it for
semantic based dynamic discovery, invocation and composition?

2. How composition of services can be edited and modeled on the basis of matching
semantics rather than to compose them just on the basis of syntactical information?

In Chapter 3, I proposed new concepts for architectural changes in Web service related
machinery to address dynamic discovery, invocation and composition issues that are raised
with semantic enhancements in Web service. In chapter 5, I proposed a more concrete level
solution of the problem by presenting a strategy that can be used to map existing business
processes (BPEL processes) to OWL-S services. I also described step by step translation
(mapping) of a BPEL process (syntax based Web services composition) (Appendix A) to
OWL-S composite service (semantic based Web services composition) (Appendix C). In
next section I provide an evaluation of my work by describing that how much successfully
my approach answer to the main research question (that I have described in two parts,
as discussed above).

87

7.3 Answer to the Main Research Question

In chapter 5, I presented a mapping strategy as mapping specifications that can be used
to translate BPEL processes to OWL-S services. I also described step by step mapping of
BPEL process (Appendix A) to OWL-S SWS (Appendix C). As a result of this step by
step mapping, till the end of Chapter 5 whole BPEL process (Appendix A) was mapped
to OWL-S service (Appendix C) with each Web service operation with in BPEL process
mapped to OWL-S atomic process (e.g. Appendix B). Here, I describe that how a BPEL
process (Appendix A) when mapped as an OWL-S service (Appendix C) can be used for
dynamic discovery by using the Profile ontology of mapped OWL-S service and how the
Process Model ontology of mapped OWL-S service can be edited to model more complex
services on the basis of matching semantics that can perform a required task.

7.3.1 Semantically Enriched Interface

In Section 5.4, I have discussed in detail that how a Profile ontology is extracted from
BPEL process model and how we can annotate it with domain ontologies to provide
semantically enriched interface of BPEL process as OWL-S service. To further understand
that how this Profile ontology is used to expose semantically enriched interface of BPEL
process to facilitate dynamic discovery of BPEL process as OWL-S service, let us consider
a small part of Profile ontology of mapped OWL-S service (also shown in Example 8 and
in Appendix C).

1 <profile:Profile rdf:about="&bpel4ws2owls#TestProfile">
2 <profile:textDescription>This Profile is created by BPEL2OWLS Tool
3 </profile:textDescription>
4
5
6 <profile:hasInput>
7 <process:Input rdf:about="&bpel4ws2owls#inputLang">
8 <process:parameterType rdf:datatype="http://www.w3.org/2001/
9 XMLSchema#anyURI">http://www.w3.org/2001/XMLSchema#string

10 </process:parameterType>
11 </process:Input>
12 </profile:hasInput>
13
14
15 </profile:Profile>

In above sample Profile ontology, parameter type of input parameter (inputLang)
is ”string”. Similarly parameter type of other parameters of the Profile ontology (as
shown in Example 8) of mapped OWL-S service is also ”string” that provide no meaning
for computer agents to reason about these Profile ontology parameters for the purpose
of dynamic discovery. Now if we annotate these input/output parameters with domain
ontologies (as discussed in Section 5.4) then above Profile ontology of mapped OWL-S
service looks as follows:

88

1 <profile:Profile rdf:about="&bpel4ws2owls#TestProfile">
2 <profile:textDescription>This Profile is created by BPEL2OWLS Tool
3 </profile:textDescription>
4
5
6 <profile:hasInput>
7 <process:Input rdf:about="&bpel4ws2owls#inputLang">
8 <process:parameterType rdf:datatype="http://www.w3.org/2001/
9 XMLSchema#anyURI">&languages#SupportedLanguage

10 </process:parameterType>
11 </process:Input>
12 </profile:hasInput>
13
14
15 </profile:Profile>

Above sample code shows that the input parameter (inputLang) is of type ”Support-
edLanguage” defined in an appropriate domain ontology that is defined at the following
address ”&languages 1”. This parameter has unique meaning for all computer agents and
can be reasoned by other semantic enabled systems to dynamically discover the BPEL
process as OWL-S service on the basis of matching semantics.

Before mapping a BPEL process to OWL-S service, the interface exposed by a BPEL
process provides only syntax based information. Such syntactical interface can be used by
human agents to define interaction between two processes that are exposed as traditional
WSDL services but not by computer agents to discover them dynamically. After mapping
a BPEL process to OWL-S SWS, the interface exposed by mapped OWL-S service as
Profile ontology provides semantically enriched information about capabilities of a BPEL
process as OWL-S service. Such a semantically exposed interface (Profile ontology) of
mapped OWL-S service is understandable for human as well as for machines. Now after
mapping a BPEL process to OWL-S service it can be dynamically discovered by using
Profile ontology of mapped OWL-S service by using different dynamic SWS discovery
approaches (e.g. [84, 108, 105, 16]).

7.3.2 Semantic Based Composition

In previous section (Section 7.3.1), I described in detail that how the Profile ontology of
mapped OWL-S service can be used to provide semantically enriched interface of BPEL
process as OWL-S service to enable it for semantic based dynamic discovery. Here, I
answer the second part of overall research question (i.e. how Process Model ontology of
mapped OWL-S service can be used to edit and model the composition of Web services
on the basis of matching semantics) and how different approaches can be used to utilize
Process Model ontology of mapped OWL-S service to dynamically compose other services
with in composite process.

In Section 1.2 (motivational scenario), I defined two problem tasks and modeled a
BPEL process for first task (as shown in Figure 1.1) as syntax based composition of

1http:www.uni-leipzig.deLanguages.owl

89

multiple services (i.e. Translator service and Dictionary service). Then I claimed that
these syntactical limitations of BPEL process model can be addressed by mapping it
to OWL-S suite of ontologies, which enables a BPEL process for dynamic composition
as OWL-S SWS. For this purpose, in addition with some architectural changes in SWS
related machinery I described a strategy to map BPEL processes to OWL-S services. As
I have explained in detail in Section ?? that how a Process Model ontology is extracted
from BPEL process model, here, I show that how the Process Model ontology of mapped
OWL-S service (i.e. Process Model ontology as composition of Translator and Dictionary
service to perform the task defined in first problem scenario) can be edited on the basis of
matching semantic information rather than syntactical information to perform the task
defined in second problem scenario (as shown in Figure 1.2).

As a first step to edit mapped OWL-S service to perform the task discussed in second
scenario (Figure 1.2), we replace dummy URIs of input/output parameters of mapped
atomic and composite processes with domain ontologies (as discussed in Section 5.4). The
annotation of input/output parameters can be performed by opening the mapped OWL
files (atomic and composite processes) in OWL-S Editor (even though some compatibility
issues between OWL-S Editor and our tool still need to be addressed, as discussed in
Section 8.4) or in any other editor (e.g. Notepad). Annotating input/output parameters
helps to edit and extend the composite process with in Process Model ontology by defining
data flow between sub processes on the basis of matching semantics. Mapped OWL-S
service (Appendix C) takes inputString, inputLang and outputLang as input parameters.
Semantically enriched definition about these input parameters is provided by annotating
them with domain ontologies (as discussed in Sections 5.4 and 7.3.1). Annotation of
input/output parameters of atomic and composite processes shows that input parameters
inputLang and outputLang are of type ”SupportedLanguage” and inputStr is of type
”string”.

The first atomic process (getTranslationProcess1) with in composite process of mapped
OWL-S service (Appendix C) translates the input string from input language (i.e. Ger-
man, which is defined in domain ontology ”Languages.owl”) to output language (i.e.
English). The second atomic process (i.e. getMeaningProcess2) provides meaning of in-
put word in English language. From here we start editing the Process Model ontology of
mapped OWL-S service (Appendix C) and add one more atomic process (i.e. getTrans-
lationProcess3) with in the Sequence CC of composite process (as shown in Appendix D,
Lines 79 to 86). We define data flow for this newly added atomic process (i.e. getTrans-
lationProcess3) which takes as input (inputLang) (value of input parameter inputLang is
English which is of type ”SupportedLanguage”), outputLang (i.e. German that is also
of type ”SupportedLanguage”) and inputStr (output of atomic process getMeaningPro-
cess2) (i.e. meaning of German word in English) as shown in Appendix D, Lines 146 to
181. The data flow can be defined by using data binding between atomic processes (as
discussed in Section 4.3.6). The data flow between atomic processes is defined on the
basis of matching semantics. Appendix D shows extended OWL-S service by adding an
atomic process (getTranslationProcess3) with in defined control flow of composite process
and with defined data flow.

Same process of editing and composing required services with in composite process
on the basis of matching semantics can be performed dynamically by using different

90

dynamic composition approaches (e.g. [100, 23, 98, 101, 83] etc.). For example, the
dynamic composition approach discussed in [100] can be used to define abstract process
for a required service with in Process Model ontology of mapped OWL-S service (even
though I have highlighted that existing approaches have some open issues to dynamically
compose services on the basis of matching functional and non-functional semantics). Then
AI planner, as discussed in this work can be used to dynamically discover and compose
matching service, which is not possible to do with a syntactical Web service composition
language (e.g. BPEL).

In Section 1.2, I defined two major problems of syntax based Web services composition
1) syntactical interface 2) static syntax based Web services composition. I addressed both
of these problems by proposing semantic enhancements in Web services infrastructure and
by mapping BPEL process to OWL-S with the help of BPEL4WS 2 OWL-S Mapping Tool.
The Profile ontology of mapped OWL-S service provide semantically enriched information
about BPEL process as OWL-S service. Mapped OWL-S service (Appendix C) is edited
and extended (Appendix D) on the basis of matching semantic information rather than
syntactical information to perform the task defined in second scenario (Figure 1.2).

7.4 Summary

In this chapter I have answered to research questions that are raised during my research
work while working on bridging the semantic gap between business processes and SWSs.
The main research question has been answered in general, as theoretical approach and
its implementation that can be used to map existing BPEL processes to OWL-S SWSs
so that BPEL processes can be dynamically discovered, invoked and composed by other
semantic enabled systems. I have also provided an evaluation of the approach presented
in this thesis. Evaluation of the work discussed in this thesis shows that the presented
approach and its compatibility with industry wide accepted standards can be used to
easily shift existing business processes from a syntactical to semantic based environment
to meet challenges of upcoming dynamic e-business world. During the evaluation, I have
also described some limitations of the proposed approach and possible solutions. More
friendly environment can be provided to end users by integrating the mapping tool with
some other process modeling and SWS development tools (e.g. OWL-S Editor).

Evaluation of the proposed approach shows that business processes when mapped as
OWL-S services can be used for semantic based composition editing and modeling of
complex services and for dynamic discovery, invocation and composition. The Process
Model ontology of mapped OWL-S service can be edited and more complex composite
service can be modeled on the basis of matching semantics to perform required task. The
Process Model ontology of mapped OWL-S service can also be used to define abstract
processes with in composite service that can be used to dynamically discover and compose
required services. AI planning techniques can also be used to automatically compose
business processes as OWL-S services. The Profile ontology of mapped OWL-S service
can be used to expose semantically enriched interface of BPEL process as OWL-S service.
This semantically enriched interface enables computer agents to dynamically discover a
business process as OWL-S service and to compose it with other services to perform
required task.

91

92

Chapter 8

Discussion and Conclusion

In this thesis I identified some challenges for business process automation (e.g. syntactical
interface, syntax based composition, static binding of services, no computer understand-
able semantics, lack of reasoning support and lack of architectural approach and frame-
work for semantic enhancements in business process). I addressed these challenges by
proposing a new architectural approach and framework for SWSs composition as well as
by presenting a strategy that can be used to overcome syntactical limitations of process
modeling languages (e.g. BPEL) by translating BPEL process descriptions to OWL-S
suite of ontologies. A prototypical implementation of the proposed approach has also
been presented as a mapping tool (i.e. BPEL4WS 2 OWL-S Mapping Tool).

The remaining chapter is organized as follows: Section 8.1 provides an open discus-
sion on the raised research problem and its proposed solution. Section 8.2 describes the
application area for the work presented in this thesis. Section 8.3 summarizes research
contributions and their impact. Some open issues and future work has been discussed in
Section 8.4.

8.1 Discussion

Architectural and technological aspects, and tools support is very important for successful
semantic enhancements in Web service, so that SWS can be easily and efficiently adopted
by industry and academia. As an example we can consider Web service technology and
SOA support for Web service and different tools (e.g. MS Visual Studio, MS BizTalk
Server, IBM WebSphere, SAP NetWeaver etc.) that can be used to develop Web services
and to model business processes as Web services compositions. To address architectural,
technological and implementation issues we need a very detailed work to be done by SWS
and its related communities. I addressed these architectural and conceptual issues to
the extent of the need of my work (i.e. to make business processes enable for dynamic
discovery, invocation and composition as SWSs by other semantic enabled systems). I
have presented a new architectural approach for integration and composition of business
processes as SWSs. In traditional application integration architecture, applications (ser-
vices) interact with each other by using syntactical interfaces exposed by these services,

93

but the 4-tier architecture proposed in this thesis addresses interaction issues between
applications (services) on the basis of their semantically enriched interfaces, which results
in dynamic interaction between services. A framework has also been presented at an
abstract level which describes the semantic based dynamic integration and composition
of business processes as SWSs.

Following the top down approach for my work I have presented a mapping strategy
that can be used to easily shift existing business processes to OWL-S services by mapping
BPEL processes to OWL-S suite of ontologies (i.e. translating BPEL process descriptions
to OWL-S service descriptions). Even though different efforts have already been done by
different research groups to shift existing business processes to SWSs through light weight
mapping (as discussed in Section 6.2) but to the best of my knowledge none of these efforts
have supported the translation of BPEL process descriptions to complete OWL-S suite of
ontologies. Another uniqueness of my approach is that it supports not only the mapping
of BPEL process model to OWL-S composite service (with Profile, Process Model and
Grounding ontologies) but also maps individual Web services operations to OWL-S atomic
processes with Profile, Process Model and Grounding ontologies.

The proposed mapping strategy is supported by implementing a tool that can be used
to map BPEL processes to OWL-S services. OWL-S service, as a result of mapping process
can be dynamically discovered by other semantic enabled systems as well as executed by
execution engines (e.g. OWL-S API).

8.2 Application Areas

The ultimate use of business processes (e.g. BPEL processes that are modeled as syntax
based compositions of WSDL services) is to export them as WSDL services that can be
used by other business partners to perform a joint functionality. As long as Web services
are being enhanced with semantics to meet demands of dynamism in rapidly growing
e-business world it is becoming more and more tough for business processes to survive in
such a dynamic world with their syntactical imitations. Also, pre-defined agreements and
collaboration between organizations slows down the process of business collaboration and
integration of business services in a distributed environment.

To meet these challenges large business organizations are working to enhance their
business process descriptions with semantics so that these business processes can be dy-
namically discovered, invoked and composed by other semantic enabled systems making
the process of business services integration more easy and automotive. A big herder
to solve the problem is that it is very cost effective and time consuming task to model
business processes in a SWS language (e.g. OWL-S) as semantic based compositions of
services and which themselves expose semantically enriched interfaces for dynamic inte-
gration and composition with partner services. The approach presented in this thesis and
its prototypical implementation provides an efficient and easy solution to enable business
processes with semantics by translating existing BPEL processes to OWL-S services.

Another application aspect of proposed approach is that with emerging benefits of
semantic enhancements in Web services, services are being made available with seman-
tically enriched service descriptions (e.g. OWL-S composite services). Compositions of
these semantically enriched services can not be modeled in a syntactical environment (e.g.

94

MS BizTalk Server) and needs some semantic based environment (e.g. OWL-S Editor).
Also, different approaches (as discussed in Chapter 3) can be used to integrate and com-
pose business processes as SWSs in dynamic and automated fashion (even though I have
highlighted some issues that still need to be addressed in this regard).

SWS and business process modeling communities can further work in this direction to
establish correspondence between syntax based and semantic based compositions of Web
services in bidirectional way (i.e. expressing business processes as SWSs and compos-
ite services as business processes). Establishing a bidirectional correspondence between
business processes and SWSs can help to avoid the overhead of dynamic and automotive
implementation algorithms and techniques when business goals and required services are
priory known. In Section 8.4 I discuss such application areas as future work.

8.3 Contributions of This Thesis

The contributions of this thesis are as follows:

• First of all a new 4-tier architecture has been presented to meet integration and
composition requirements for integration of business processes as semantically en-
riched Web services. The proposed architecture addresses different semantic based
composition issues (e.g. semantic based Web services interfaces, bridging semantic
gap between different integration layers, semantic based UDDI query mechanism
etc.). The proposed 4-tier architecture has been discussed in my work [25, 76].
On the basis of 4-tier architecture I proposed a SWS integration and composition
life cycle [24] and a general framework at an abstract level for dynamic and auto-
mated composition of business process as SWSs [23]. The composition framework
follows the approach of newly proposed 4-tier SWS integration and composition
architecture and SWS integration and composition life cycle. These architectural
and theoretical concepts have been discussed in Chapter 3 in detail.

• Second, mapping constraints on the basis of matching functional characteristics
of BPEL activities and OWL-S CCs have been discussed in Chapter 4. Process
modeling and semantic capabilities of BPEL process model and OWL-S suite of
ontologies have been analyzed in detail and mapping constrains have been defined
to establish correspondence between BPEL processes and OWL-S services. Mapping
constrains also addresses translation issues very well for activities which have dual
behavior with in BPEL process model.

• Third, mapping specifications and algorithms have been discussed in Chapter 5
to translate BPEL process descriptions to OWL-S suite of ontologies. Mapping
specifications show that how OWL-S suite of ontologies (i.e. Profile, Process Model
and Grounding ontologies) can be extracted from BPEL process model. It also
aims at describing that how control flow and data flow can be defined between child
processes with in mapped OWL-S composite service. Mapping algorithms show
that how efficiently different BPEL activities can be mapped to OWL-S CCs.

• Fourth, I have developed a tool (i.e. BPEL4WS 2 OWL-S Mapping Tool) as an
implementation of the proposed approach that can be used to bridge the semantic

95

gap between business processes and SWSs. BPEL4WS 2 OWL-S Mapping Tool can
be used to map BPEL processes to complete OWL-S suite of ontologies. I have also
explored (as discussed in Section 1.4) and criticized some initial work done by other
research groups in this area. In my work [20, 22, 21] I have pointed out limitations
and drawbacks of previous work done by other research groups in this area and
have shown that how my work provide a more consistent and efficient solution of
prescribed problem. Chapter 6 discusses the implementation and architecture of
the tool in detail.

• Fifth, in Chapter 7, I have provided an evaluation of proposed approach and its
prototypical implementation. In this chapter 7 I describe that how the approach
presented in this thesis addresses syntactical limitations of process modeling lan-
guage (i.e. BPEL) that have pointed out in Section 1.2 and enable existing business
processes for semantic based composition editing, modeling and for dynamic dis-
covery, invocation and composition on the basis of matching semantics. In Chapter
8 I point out some limitations and give future directions to make this work more
useful for SWS and process modeling communities.

8.4 Open Issues and Future Work

While describing my approach to bridge the semantic gap between business processes and
SWSs, I have presented architectural and theoretical concepts, a strategy to map existing
business processes to SWSs and its prototypical implementation. During the previous
chapters where I have described that how my work distinguishes from other approaches
presented in this area by other research groups, I have also pointed out some issues that
I have partially addressed in the proposed solution or still need to be solved.

Here I provide a list of open issues that may be addressed in future to make this work
more consistent and efficient solution for prescribed problem.

• Semantically enriched registries that can be used to publish and query for semanti-
cally enriched services.

• A more clear picture of SWS integration life cycle and framework for SWS com-
position and its implementation by extending the proposed strategy and its imple-
mentation tool.

• More consistent mapping specifications with upcoming versions of OWL-S.

• Support for mapping multiple condition statements to SWRL expressions.

• Algorithms to parse BPEL and WSDL files and to map them to OWL-S more
efficiently.

• Extracting multiple Profile ontologies for one Process Model ontology.

• Synchronization between process components.

• Providing object view of mapped OWL-S atomic and composite processes

96

• Extending the mapping tool to import domain ontologies and to annotate mapped
OWL-S service with these domain ontologies.

• Evaluating the tool with more complex business process scenarios to make it effi-
ciently usable in large business organizations.

• Implementing the tool as a BPEL4WS 2 OWL-S Import Plugin for SWS develop-
ment tool (i.e. OWL-S Editor).

• Bidirectional correspondence between business process and SWSs (i.e. translating
business processes to SWSs and vice versa, according to situations and requirements
of end user).

Regarding future work, it will be beneficial to perform more consistent mapping by
addressing limitations that I described in Chapter 5 and above discussed open issues with
upcoming OWL-S specifications. Also, making the implemented tool a part of some larger
framework like Protégé can make the proposed work more useful for end user. Such an
effort will allow to directly import BPEL processes as OWL-S services in Protégé (with
its OWL-S Editor plugin). It will also become easier for end user to develop domain
ontologies and to annotate the Profile ontology parameters with domain concepts while
working in the same environment. Hence, I am working on making the tool part of Protégé
as BPEL4WS 2 OWL-S Import Plugin for Protégé OWL-S Editor.

Figure 8.1: An overview of SWSs development tool (Protégé (OWL-S Editor)).

An overview of my ongoing work (future work) is to provide more concrete and practial
approach for semantic based discovery, invocation and composition of business processes
as SWSs. Especially providing the practical implementation of the SWS integration and
composition framework that is discussed in Chapter 3.

97

During my PhD work I had discussions with many other research groups from the
same area and on mailing list, SWS community has appreciated my idea of improvement
of mapping tool as BPEL4WS 2 OWL-S Import Plugin for Protégé (OWL-S Editor).
BPEL4WS 2 OWL-S Import Plugin will help to easily shift existing business processes
from a syntax based to semantic based environment. The plugin will appear as a button
in OWL-S Editor tab of Protégé framework. Clicking the BPEL4WS 2 OWL-S Import
Plugin button will open a wizard which will take as input from the user a BPEL process
file, master WSDL file and slave WSDL files (as discussed in Section 6.5 and shown in
Figure 6.3) which are part of the process. The BPEL4WS 2 OWL-S import wizard will
finish with import of BPEL process as OWL-S service (composite process with Profile,
Process Model and Grounding) ontologies. Sub processes (atomic or composite) will also
appear in the process:Process window of OWL-S Editor. Service, Profile and Grounding
ontologies will appear under service:Service, profile:Profile and grounding:WsdlGrounding
windows as shown in Figure 8.1. End user will be able to simply click and edit any of
these ontologies. Specially it will become easier for end user to directly import BPEL
process as OWL-S ontology and edit the flow of composite process in visual environment
of OWL-S Editor. I hope in future I will finish this work which will help for easy shifting
of business processes from a syntactical to semantic based environment.

98

Appendix A

BPEL Process Modeled in MS
BizTalk Server

1 <?xml version="1.0"?> <process

2 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

3 xmlns:q2="http://www.mindswap.org/2002/services/Translator.wsdl".../">

4 <partnerLinks>

5 <partnerLink name="To_Translation_Service_Port_1" partnerLinkType="q1:To_Translation_Service_Port_1Type" partnerRole="portRole" />

6 <partnerLink name="Dictionary_Ser_Port" partnerLinkType="q1:Dictionary_Ser_PortType" partnerRole="portRole" />

7 <partnerLink name="Reverse_Translation_Port" partnerLinkType="q1:Reverse_Translation_PortType" partnerRole="portRole" />

8 <partnerLink name="Input_Output_Port" partnerLinkType="q1:Input_Output_PortType_0" myRole="portRole" />

9 </partnerLinks>

10 <variables>

11 <variable name="Input_Message" messageType="q1:__messagetype_LangTranslationPrj_InputStrAndLang" />

12 <variable name="Message1_To_Translation_Service" messageType="q2:TranslatorRequest" />

13 <variable name="Message1_From_Translation_Service" messageType="q2:TranslatorResponse" />

14 <variable name="Message_1_To_Dic_Service" messageType="q3:DictionaryRequest" />

15 <variable name="Message_1_From_Dic_Service" messageType="q3:DictionaryResponse" />

16 </variables>

17 <sequence>

18 <receive partnerLink="Input_Output_Port" portType="q1:Input_Output_PortType" operation="Operation_1"

19 variable="Input_Message" createInstance="yes" />

20 <assign>

21

22 <copy>

23 <from variable="Input_Message" part="part" query=.....[local-name()=’inputStr’ and namespace-uri()=’’]" />

24 <to variable="Message1_To_Translation_Service" part="inputString" query="/*[local-name()=’string’....." />

25 </copy>

26

27 <copy>

28 <from variable="Input_Message" part="part" query=.....[local-name()=’inputLang’ and namespace-uri()=’’]" />

29 <to variable="Message1_To_Translation_Service" part="inputLanguage" query="/*[local-name()=’string’....." />

30 </copy>

31

32 <copy>

33 <from variable="Input_Message" part="part" query=.....[local-name()=’outputLang’ and namespace-uri()=’’]" />

34 <to variable="Message1_To_Translation_Service" part="outputLanguage" query="/*[local-name()=’string’....." />

35 </copy>

36 </assign>

37 <invoke partnerLink="To_Translation_Service_Port_1" portType="q2:TranslatorPortType" operation="getTranslation"

38 inputVariable="Message1_To_Translation_Service" outputVariable="Message1_From_Translation_Service" />

39 <assign>

40 <copy>

41 <from variable="Message1_From_Translation_Service" part="getTranslationResult" />

42 <to variable="Message_1_To_Dic_Service" part="inputString" />

43 </copy>

44 </assign>

99

45 <invoke partnerLink="Dictionary_Ser_Port" portType="q3:DictionaryPortType" operation="getMeaning"

46 inputVariable="Message_1_To_Dic_Service" outputVariable="Message_1_From_Dic_Service" />

47 <invoke partnerLink="Output_Port" portType="q1:Output_PortType_1" operation="Operation_1"

48 inputVariable="Message_1_From_Dic_Service" />

49 </sequence>

50 </process>

100

Appendix B

Mapped OWL-S Atomic Process

1 <?xml version="1.0" encoding="windows-1252"?>

2 <rdf:RDF

3 xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#"

4 xml:base="http://examples.org/DummyURI.owl">

5

6 <service:Service rdf:ID="getTranslationService"/>

7 <profile:Profile rdf:ID="getTranslationProfile">

8 <profile:hasOutput>

9 <process:Output rdf:about="#wsdlFileAddress#return">

10 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

11 http://www.w3.org/2001/XMLSchema#string</process:parameterType>

12 </process:Output>

13 </profile:hasOutput>

14 <profile:hasInput>

15 <process:Input rdf:about="#wsdlFileAddress#outputLanguage">

16 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

17 http://www.w3.org/2001/XMLSchema#string</process:parameterType>

18 </process:Input>

19 </profile:hasInput>

20 <profile:hasInput>

21 <process:Input rdf:about="#filewsdlFileAddress#inputString">

22 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

23 http://www.w3.org/2001/XMLSchema#string</process:parameterType>

24 </process:Input>

25 </profile:hasInput>

26 <profile:hasInput>

27 <process:Input rdf:about="#wsdlFileAddress#inputLanguage">

28 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

29 http://www.w3.org/2001/XMLSchema#string</process:parameterType>

30 </process:Input>

31 </profile:hasInput>

32 </profile:Profile>

33 <process:AtomicProcess rdf:ID="getTranslationProcess">

34 <rdfs:label>getTranslationProcess</rdfs:label>

35 <process:hasInput rdf:resource="#wsdlFileAddress#outputLanguage"/>

36 <process:hasInput rdf:resource="#wsdlFileAddress#inputString"/>

37 <process:hasInput rdf:resource="#wsdlFileAddress#inputLanguage"/>

38 <process:hasOutput rdf:resource="#wsdlFileAddress#return"/>

39 </process:AtomicProcess>

40 <grounding:WsdlGrounding rdf:ID="getTranslationGrounding">

41 <grounding:hasAtomicProcessGrounding>

42 <grounding:WsdlAtomicProcessGrounding rdf:ID="getTranslationAtomicProcessGrounding"/>

43 </grounding:hasAtomicProcessGrounding>

44 </grounding:WsdlGrounding>

45 <grounding:WsdlAtomicProcessGrounding rdf:about="#getTranslationAtomicProcessGrounding">

46 <grounding:wsdlInput>

101

47 <grounding:WsdlInputMessageMap>

48 <grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

49 wsdlFileAddress#outputLanguage</grounding:wsdlMessagePart>

50 <grounding:owlsParameter rdf:resource="#wsdlFileAddress#outputLanguage"/>

51 </grounding:WsdlInputMessageMap>

52 </grounding:wsdlInput>

53 <grounding:wsdlInputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

54 wsdlFileAddress#/Translator.wsdl#TranslatorRequest</grounding:wsdlInputMessage>

55 <grounding:wsdlInput>

56 <grounding:WsdlInputMessageMap>

57 <grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

58 wsdlFileAddress#inputLanguage</grounding:wsdlMessagePart>

59 <grounding:owlsParameter rdf:resource="#wsdlFileAddress#inputLanguage"/>

60 </grounding:WsdlInputMessageMap>

61 </grounding:wsdlInput>

62 <grounding:wsdlInput>

63 <grounding:WsdlInputMessageMap>

64 <grounding:owlsParameter rdf:resource="#wsdlFileAddress#inputString"/>

65 <grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

66 wsdlFileAddress#inputString</grounding:wsdlMessagePart>

67 </grounding:WsdlInputMessageMap>

68 </grounding:wsdlInput>

69 <grounding:wsdlOutput>

70 <grounding:WsdlOutputMessageMap>

71 <grounding:wsdlMessagePart rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

72 wsdlFileAddress#return</grounding:wsdlMessagePart>

73 <grounding:owlsParameter rdf:resource="#wsdlFileAddress#return"/>

74 </grounding:WsdlOutputMessageMap>

75 </grounding:wsdlOutput>

76 <grounding:wsdlDocument rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

77 wsdlFileAddress#/TranslatorService.wsdl</grounding:wsdlDocument>

78 <grounding:wsdlOutputMessage rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

79 wsdlFileAddress#/Translator.wsdl#TranslatorResponse</grounding:wsdlOutputMessage>

80 </grounding:WsdlAtomicProcessGrounding>

81 </rdf:RDF>

102

Appendix C

Mapped OWL-S Composite
Service

1 <?xml version="1.0" encoding="windows-1252"?> <rdf:RDF

2 xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#">

3 xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#">

4 <service:Service rdf:about="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestService">

5 <service:describedBy>

6 <process:CompositeProcess rdf:about="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestProcess"/>

7 </service:describedBy>

8 <service:presents>

9 <profile:Profile rdf:about="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestProfile"/>

10 </service:presents>

11 <service:supports>

12 <grounding:WsdlGrounding rdf:about="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestGrounding"/>

13 </service:supports>

14 </service:Service>

15 <profile:Profile rdf:about="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestProfile">

16 <profile:textDescription>This Profile is created by BPEL2OWLS Tool</profile:textDescription>

17 <profile:hasInput>

18 <process:Input rdf:about="http://www.BPEL2OWLS.org/ChangeTestURI.owl#inputStr">

19 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

20 http://www.w3.org/2001/XMLSchema#string</process:parameterType>

21 </process:Input>

22 </profile:hasInput>

23 <profile:hasInput>

24 <process:Input rdf:about="http://www.BPEL2OWLS.org/ChangeTestURI.owl#inputLang">

25 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

26 http://www.w3.org/2001/XMLSchema#string</process:parameterType>

27 </process:Input>

28 </profile:hasInput>

29 <profile:hasInput>

30 <process:Input rdf:about="http://www.BPEL2OWLS.org/ChangeTestURI.owl#outputLang">

31 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

32 http://www.w3.org/2001/XMLSchema#string</process:parameterType>

33 </process:Input>

34 </profile:hasInput>

35 <profile:hasOutput>

36 <process:Output rdf:about="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestOutput0">

37 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

38 http://www.w3.org/2001/XMLSchema#string</process:parameterType>

39 </process:Output>

40 </profile:hasOutput>

41 <rdfs:label>BPEL2OWLS Profile</rdfs:label>

42 <service:presentedBy rdf:resource="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestService"/>

43 </profile:Profile>

103

44 <process:CompositeProcess rdf:about="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestProcess">

45 <process:composedOf>

46 <process:Sequence>

47 <process:components>

48 <process:ControlConstructList>

49 <list:first>

50 <process:Perform rdf:about="http://examples.org/DummyURI.owl#getTranslation1"/>

51 </list:first>

52 <list:rest>

53 <process:ControlConstructList>

54 <list:first>

55 <process:Perform rdf:about="http://examples.org/DummyURI.owl#getMeaning2"/>

56 </list:first>

57 </process:ControlConstructList>

58 </list:rest>

59 </process:ControlConstructList>

60 </process:components>

61 </process:Sequence>

62 </process:composedOf>

63 <process:hasOutput rdf:resource="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestOutput0"/>

64 <process:hasInput rdf:resource="http://www.BPEL2OWLS.org/ChangeTestURI.owl#inputLang"/>

65 <process:hasResult>

66 <process:Result>

67 <process:withOutput>

68 <process:OutputBinding>

69 <process:toParam rdf:resource="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestOutput0"/>

70 <process:valueSource>

71 <process:ValueOf>

72 <process:fromProcess>

73 <process:Perform rdf:about="http://examples.org/DummyURI.owl#getMeaning2"/>

74 </process:fromProcess>

75 <process:theVar rdf:resource="http://examples.org/DummyURI.owl/wsdlFileAddress#return"/>

76 </process:ValueOf>

77 </process:valueSource>

78 </process:OutputBinding>

79 </process:withOutput>

80 </process:Result>

81 </process:hasResult>

82 <service:describes rdf:resource="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestService"/>

83 <process:hasInput rdf:resource="http://www.BPEL2OWLS.org/ChangeTestURI.owl#inputStr"/>

84 <process:hasInput rdf:resource="http://www.BPEL2OWLS.org/ChangeTestURI.owl#outputLang"/>

85 </process:CompositeProcess>

86 <process:Perform rdf:about="http://examples.org/DummyURI.owl#getTranslation1">

87 <process:hasDataFrom>

88 <process:InputBinding>

89 <process:valueSource>

90 <process:ValueOf>

91 <process:theVar rdf:resource="http://www.BPEL2OWLS.org/ChangeTestURI.owl#inputLang"/>

92 <process:fromProcess rdf:resource="http://www.daml.org/services/owl-s/1.1/Process.owl#TheParentPerform"/>

93 </process:ValueOf>

94 </process:valueSource>

95 <process:toParam rdf:resource="http://examples.org/DummyURI.owl/wsdlFileAddress#inputLanguage"/>

96 </process:InputBinding>

97 </process:hasDataFrom>

98 <process:process rdf:resource="http://examples.org/DummyURI.owl#getTranslationProcess"/>

99 <process:hasDataFrom>

100 <process:InputBinding>

101 <process:toParam rdf:resource="http://examples.org/DummyURI.owl/wsdlFileAddress#inputString"/>

102 <process:valueSource>

103 <process:ValueOf>

104 <process:fromProcess rdf:resource="http://www.daml.org/services/owl-s/1.1/Process.owl#TheParentPerform"/>

105 <process:theVar rdf:resource="http://www.BPEL2OWLS.org/ChangeTestURI.owl#inputStr"/>

106 </process:ValueOf>

107 </process:valueSource>

108 </process:InputBinding>

109 </process:hasDataFrom>

110 <process:hasDataFrom>

111 <process:InputBinding>

112 <process:valueSource>

104

113 <process:ValueOf>

114 <process:theVar rdf:resource="http://www.BPEL2OWLS.org/ChangeTestURI.owl#outputLang"/>

115 <process:fromProcess rdf:resource="http://www.daml.org/services/owl-s/1.1/Process.owl#TheParentPerform"/>

116 </process:ValueOf>

117 </process:valueSource>

118 <process:toParam rdf:resource="http://examples.org/DummyURI.owl/wsdlFileAddress#outputLanguage"/>

119 </process:InputBinding>

120 </process:hasDataFrom>

121 </process:Perform>

122 <process:Perform rdf:about="http://examples.org/DummyURI.owl#getMeaning2">

123 <process:hasDataFrom>

124 <process:InputBinding>

125 <process:valueSource>

126 <process:ValueOf>

127 <process:theVar rdf:resource="http://examples.org/DummyURI.owl/wsdlFileAddress#return"/>

128 <process:fromProcess rdf:resource="http://examples.org/DummyURI.owl#getTranslation1"/>

129 </process:ValueOf>

130 </process:valueSource>

131 <process:toParam rdf:resource="http://examples.org/DummyURI.owl/wsdlFileAddress#inputString"/>

132 </process:InputBinding>

133 </process:hasDataFrom>

134 <process:process rdf:resource="http://examples.org/DummyURI.owl#getMeaningProcess"/>

135 </process:Perform>

136 <grounding:WsdlGrounding rdf:about="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestGrounding">

137 <service:supportedBy rdf:resource="http://www.BPEL2OWLS.org/ChangeTestURI.owl#TestService"/>

138 <grounding:hasAtomicProcessGrounding rdf:resource="http://examples.org/DummyURI.owl#getTranslationAtomicProcessGrounding"/>

139 <grounding:hasAtomicProcessGrounding rdf:resource="http://examples.org/DummyURI.owl#getMeaningAtomicProcessGrounding"/>

140 </grounding:WsdlGrounding>

141 </rdf:RDF>

105

106

Appendix D

Semantically Enriched and
Extended OWL-S Service

1 <?xml version="1.0" encoding="windows-1252"?> <rdf:RDF

2 xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#">

3 xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#"

4 xmlns:Languages="http://bis.informatik.uni-leipzig.de/LanguageOntology.owl">

5 <service:Service rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#TestService">

6 <service:describedBy>

7 <process:CompositeProcess rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#TestProcess"/>

8 </service:describedBy>

9 <service:presents>

10 <profile:Profile rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#TestProfile"/>

11 </service:presents>

12 <service:supports>

13 <grounding:WsdlGrounding rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#TestGrounding"/>

14 </service:supports>

15 </service:Service>

16 <profile:Profile rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#TestProfile">

17 <profile:textDescription>This Profile is created by BPEL2OWLS Tool</profile:textDescription>

18 <profile:hasInput>

19 <process:Input rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#inputStr">

20 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

21 http://www.w3.org/2001/XMLSchema#string</process:parameterType>

22 </process:Input>

23 </profile:hasInput>

24 <profile:hasInput>

25 <process:Input rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#inputLang">

26 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

27 &Language#SupportedLanguage</process:parameterType>

28 </process:Input>

29 </profile:hasInput>

30 <profile:hasInput>

31 <process:Input rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#outputLang">

32 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

33 &Language#SupportedLanguage</process:parameterType>

34 </process:Input>

35 </profile:hasInput>

36 <profile:hasOutput>

37 <process:Output rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#TestOutput0">

38 <process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">

39 http://www.w3.org/2001/XMLSchema#string</process:parameterType>

40 </process:Output>

41 </profile:hasOutput>

42 <rdfs:label>BPEL2OWLS Profile</rdfs:label>

43 <service:presentedBy rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#TestService"/>

107

44 </profile:Profile>

45 <process:CompositeProcess rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#TestProcess">

46 <process:hasOutput rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#TestOutput0"/>

47 <process:hasInput rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#inputLang"/>

48 <service:describes rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#TestService"/>

49 <process:hasResult>

50 <process:Result>

51 <process:withOutput>

52 <process:OutputBinding>

53 <process:valueSource>

54 <process:ValueOf>

55 <process:theVar rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#return"/>

56 <process:fromProcess>

57 <process:Perform rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#getTranslation3"/>

58 </process:fromProcess>

59 </process:ValueOf>

60 </process:valueSource>

61 <process:toParam rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#TestOutput0"/>

62 </process:OutputBinding>

63 </process:withOutput>

64 </process:Result>

65 </process:hasResult>

66 <process:composedOf>

67 <process:Sequence>

68 <process:components>

69 <process:ControlConstructList>

70 <list:first>

71 <process:Perform rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#getTranslation1"/>

72 </list:first>

73 <list:rest>

74 <process:ControlConstructList>

75 <list:first>

76 <process:Perform rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#getMeaning2"/>

77 </list:first>

78 <list:rest>

79 <process:ControlConstructList>

80 <list:rest rdf:resource="http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl#nil"/>

81 <list:first>

82 <process:Perform rdf:about="http://examples.org/DummyURI.owl#getTranslation3"/>

83 </list:first>

84 </process:ControlConstructList>

85 </list:rest>

86 </process:ControlConstructList>

87 </list:rest>

88 </process:ControlConstructList>

89 </process:components>

90 </process:Sequence>

91 </process:composedOf>

92 <process:hasInput rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#inputStr"/>

93 <process:hasInput rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#outputLang"/>

94 </process:CompositeProcess>

95 <process:Perform rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#getTranslation1">

96 <process:hasDataFrom>

97 <process:InputBinding>

98 <process:toParam rdf:resource="http://bis.informatik.uni-leipzig.de/getTranslation.owl#outputLanguage"/>

99 <process:valueSource>

100 <process:ValueOf>

101 <process:theVar rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#outputLang"/>

102 <process:fromProcess rdf:resource="http://www.daml.org/services/owl-s/1.1/Process.owl#TheParentPerform"/>

103 </process:ValueOf>

104 </process:valueSource>

105 </process:InputBinding>

106 </process:hasDataFrom>

107 <process:hasDataFrom>

108 <process:InputBinding>

109 <process:valueSource>

110 <process:ValueOf>

111 <process:fromProcess rdf:resource="http://www.daml.org/services/owl-s/1.1/Process.owl#TheParentPerform"/>

112 <process:theVar rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#inputLang"/>

113 </process:ValueOf>

108

114 </process:valueSource>

115 <process:toParam rdf:resource="http://bis.informatik.uni-leipzig.de/getTranslation.owl#inputLanguage"/>

116 </process:InputBinding>

117 </process:hasDataFrom>

118 <process:process rdf:resource="http://bis.informatik.uni-leipzig.de/getTranslation.owl#getTranslationProcess"/>

119 <process:hasDataFrom>

120 <process:InputBinding>

121 <process:valueSource>

122 <process:ValueOf>

123 <process:fromProcess rdf:resource="http://www.daml.org/services/owl-s/1.1/Process.owl#TheParentPerform"/>

124 <process:theVar rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#inputStr"/>

125 </process:ValueOf>

126 </process:valueSource>

127 <process:toParam rdf:resource="http://bis.informatik.uni-leipzig.de/getTranslation.owl#inputString"/>

128 </process:InputBinding>

129 </process:hasDataFrom>

130 </process:Perform>

131 <process:Perform rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#getMeaning2">

132 <process:hasDataFrom>

133 <process:InputBinding>

134 <process:toParam rdf:resource="http://bis.informatik.uni-leipzig.de/getMeaning.owl#inputString"/>

135 <process:valueSource>

136 <process:ValueOf>

137 <process:fromProcess rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#getTranslation1"/>

138 <process:theVar rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#return"/>

139 </process:ValueOf>

140 </process:valueSource>

141 </process:InputBinding>

142 </process:hasDataFrom>

143 <process:process rdf:resource="http://bis.informatik.uni-leipzig.de/getMeaning.owl#getMeaningProcess"/>

144 </process:Perform>

145 <process:Perform rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#getTranslation3">

146 <process:hasDataFrom>

147 <process:InputBinding>

148 <process:valueSource>

149 <process:ValueOf>

150 <process:fromProcess rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#getMeaning2"/>

151 <process:theVar rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#return"/>

152 </process:ValueOf>

153 </process:valueSource>

154 <process:toParam rdf:resource="http://bis.informatik.uni-leipzig.de/getTranslation.owl#inputString"/>

155 </process:InputBinding>

156 </process:hasDataFrom>

157 <process:hasDataFrom>

158 <process:InputBinding>

159 <process:valueSource>

160 <process:ValueOf>

161 <process:fromProcess rdf:resource="http://www.daml.org/services/owl-s/1.1/Process.owl#TheParentPerform"/>

162 <process:theVar rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#inputLang"/>

163 </process:ValueOf>

164 </process:valueSource>

165 <process:toParam rdf:resource="http://bis.informatik.uni-leipzig.de/getTranslation.owl#outputLanguage"/>

166 </process:InputBinding>

167 </process:hasDataFrom>

168 <process:process rdf:resource="http://bis.informatik.uni-leipzig.de/getTranslation.owl#getTranslationProcess"/>

169 <process:hasDataFrom>

170 <process:InputBinding>

171 <process:toParam rdf:resource="http://bis.informatik.uni-leipzig.de/getTranslation.owl#inputLanguage"/>

172 <process:valueSource>

173 <process:ValueOf>

174 <process:fromProcess rdf:resource="http://www.daml.org/services/owl-s/1.1/Process.owl#TheParentPerform"/>

175 <process:theVar rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#outputLang"/>

176 </process:ValueOf>

177 </process:valueSource>

178 </process:InputBinding>

179 </process:hasDataFrom>

180 </process:Perform>

181 <grounding:WsdlGrounding rdf:about="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#TestGrounding">

109

182 <service:supportedBy rdf:resource="http://bis.informatik.uni-leipzig.de/GermanToGermanDic.owl#TestService"/>

183 <grounding:hasAtomicProcessGrounding rdf:resource="http://bis.informatik.uni-leipzig.de/getTranslation.owl#

184 getTranslationAtomicProcessGrounding"/>

185 <grounding:hasAtomicProcessGrounding rdf:resource="http://bis.informatik.uni-leipzig.de/getMeaning.owl#

186 getMeaningAtomicProcessGrounding"/>

187 </grounding:WsdlGrounding>

188 </rdf:RDF>

110

Bibliography

[1] Com: Component object model technologies. Online:
http://www.microsoft.com/com/default.mspx.

[2] Dcom technical overview. Online: http://msdn.microsoft.com/library/default.a
sp?url=/library/en-us/dndcom/html/msdn dcomtec.asp.

[3] Shop: Automated planning. Online: http://www.cs.umd.edu/projects/shop/des
cription.html.

[4] Universal plug and play (upnp) language. Online: http://upnp.org/.

[5] Web services activity statement. Online: http://www.w3.org/2002/ws/Activity.

[6] Wie schreibt man eigentlich web service. Online:
http://www.jeckle.de/webServices/index.html.

[7] Xlang. Online: http://xml.coverpages.org/xlang.html, June 2001.

[8] Common object request broker architecture: Core specification. Online:
http://www-lih.univ-lehavre.fr/d̃utot/enseignement/CORBA/CORBA3 spec.pdf,
March 2004.

[9] Jena-a semantic web framework for java. Online:
http://jena.sourceforge.net/index.html, 2004.

[10] The owl-s editor. Online: http://owlseditor.semwebcentral.org/, 2004.

[11] Owl web ontology language overview. Online: http://www.w3.org/TR/owl-
features/, February 2004.

[12] Protégé: Ontology editor and knowledge-base framework. Online:
http://protege.stanford.edu/, September 2006.

[13] Susie Adams, Clifford R. Cannon, Dilip Hardas, Cuneyt Havlioglu, Akhtar Hossein,
Charles Kaiman, Tom Lake, Bill Martschenko, Rand Morimoto, Robert Oikawa,
Rick Pearson, Kevin Price, Stephen Tranchida, and Larrry Wall. BizTalk Unleashed.
Sams, Feburary 2002.

111

[14] Rohit Aggarwal, Kunal Verma, John Miller, and Willie Milnor. Dynamic web
service composition in meteor-s. Technical report, LSDIS Lab, Computer Science
Department, University of Georgia, USA, 2004.

[15] Rama Akkiraju, Joel Farell, John Miller, Meenakshi Nagarajan, Amit Sheth, and
Kunal Verma. Web service semantics - wsdl-s, November 2005.

[16] Rama Akkiraju, Richard Goodwin, Prashant Doshi, and Sascha Roeder. A method
for semantically enhancing the service discovery capabilities of UDDI. In Subbarao
Kambhampati and Craig A. Knoblock, editors, IIWeb, pages 87–92, 2003.

[17] George Anderson and Danielle Larocca. Sams Teach Yourself SAP in 24 Hours,
Second Edition. Sams, November 2005.

[18] Grigoris Antoniou and Frank van Harmelen. Web ontology language: Owl. Online:
http://www.cs.vu.nl/ frankh/postscript/OntoHandbook03OWL.pdf.

[19] Sinuhe Arroyo, Emilia Cimpian, John Domingue, Cristina Feier, Dieter Fensel and-
Birgitta König-Ries, Holger Lausen, Axel Polleres, and Michael Stollberg. Web ser-
vice modeling ontology primer. Online: http://www.w3.org/Submission/WSMO-
primer/, June 2005.

[20] Muhammad Ahtisham Aslam, Sören Auer, and Jun Shen. From bpel4ws process
model to full owl-s ontology. In Proceedings of Posters and Demos 3rd European
Semantic Web Conference (ESWC 2006), pages 61–62, Budva, Montenegro, June
2006.

[21] Muhammad Ahtisham Aslam, Sören Auer, and Jun Shen. Bridging the semantic
gap between business processes and semantic web services. Journal of Internet
Technologies, Under review process, 2007.

[22] Muhammad Ahtisham Aslam, Sören Auer, Jun Shen, and Michael Herrmann. Ex-
pressing business process model as owl-s ontologies. In Proceedings of the 2nd Inter-
national Workshop on Grid and Peer-to-Peer based Workflows (GPWW 2006) in
conjunction with the 4th International Conference on Business Process Management
(BPM 2006), pages 400–415, Vienna, Austria, September 2006.

[23] Muhammad Ahtisham Aslam, Sören Auer, Jun Shen, and Michael Herrmann. Web
services composition to facilitate grid and distributed computing: Current ap-
proaches and future framework. In Proceedings of 4th International Workshop on
Frontiers of Information Technology (FIT 2006), 2006.

[24] Muhammad Ahtisham Aslam, Sören Auer, Jun Shen, and Michael Herrmann. An
integration life cycle for semantic web services composition. In Proceedings of the
11th International Conference on Computer Supported Cooperative Work in Design
(CSCWD 07), April 2007.

[25] Muhammad Ahtisham Aslam, Michael Herrmann, Sören Auer, and Richard Golden.
Real-life soa eexperiences and an approach towards semantic soa. In Proceed-
ings of 4th International Workshop on SOA and Web Services in conjunction with

112

ACM SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA 2006), pages 72–81, Portland, Ore-
gon, USA, October 2006.

[26] Roland Barcia, Bill Hines, Tom Alcott, and Keys Botzum. IBM WebSphere: De-
ployment and Advanced Configuration. IBM Press, August 2004.

[27] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform resource identi-
fier (uri): Generic syntax. Online: http://gbiv.com/protocols/uri/rfc/rfc3986.html,
January 2005.

[28] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, May 2001.

[29] Kalina Bontcheva. Project description. Technical report, EU-IST Project IST-
2004-026460 TAO (TAO: Transitioning Applications to Ontologies), University of
Sheffield, August 2006.

[30] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Cham-
pion, Chris Ferris, and David Orchard. Web services architecture. Online:
http://www.w3.org/TR/ws-arch/, February 2004.

[31] David Booth and Canyang Kevin Liu. Web services description language (WSDL)
version 2.0 part 0: Primer. World Wide Web Consortium, Candidate Recommen-
dation CR-wsdl20-primer-20060327, March 2006.

[32] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Francois
Yergeau. Extensible markup language (xml) 1.0 (fourth edition). Online:
http://www.w3.org/TR/2006/REC-xml-20060816/, September 2006.

[33] Dan Brickley and Ramanathan V. Guha. RDF vocabulary description lan-
guage 1.0: RDF schema. W3C recommendation, W3C, Feburary 2004. Online:
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[34] Mark Burstein, Christoph Bussler, Michal Zaremba, Tim Finin, Michael N. Huhns,
Massimo Paolucci, Amit P. Sheth, and Stuart Williams. A semantic web services
architecture. IEEE Internet Computing, 9(5):72–81, 2005.

[35] Christoph Bussler. B2B Integration: Concepts and Architecture. Springer, 2003.

[36] Christoph Bussler, Emilia Cimpian, Dieter Fensel, Juan Miguel Gomez, Armin
Haller, Thomas Haselwanter, Michael Kerrigan, Adrian Mocan, Matthew Moran,
Eyal Oren, Brahmananda Sapkota, Ioan Toma, Jana Viskova, Tomas Vitvar, Maciej
Zaremba, and Michal Zaremba. Web service execution environment (wsmx). Online:
http://www.w3.org/Submission/WSMX/, June 2005.

[37] Jorge Cardoso and Amit P. Sheth. Introduction to semantic web services and web
process composition. In Jorge Cardoso and Amit P. Sheth, editors, SWSWPC,
volume 3387 of Lecture Notes in Computer Science, pages 1–13. Springer, 2004.

113

[38] Chen-Burger, Yun-Heh, and Dave Robertson. Mapping a Business Process Model
to a Web Services Model. In Li Guo, editor, Third IEEE International Conference
on Web Services 2004, pages 746–749, July 2004.

[39] Yun-Heh Chen-Burger, Austin Tate, and Dave Robertson. Enterprise modelling: A
declarative approach for fbpml. In Proceedings of European Conference of Artifi-
cial Intelligence, Knowledge Management and Organisational Memories Workshop,
Lyon, France, 2002.

[40] James Clark. XSL transformations (XSLT) version 1.1. World Wide Web Consor-
tium, Working Draft WD-xslt11-20010824, August 2001.

[41] Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers. UDDI version
3.0.2. Organization for the Advancement of Structured Information Standards,
UDDI Spec Technical Committee Draft, October 2004.

[42] Francisco Curbera, Hitesh Dholakia, Yaron Goland Bea, Johannes Klein Microsoft,
Frank Leymann Ibm, Kevin Liu Sap, Dieter Roller Ibm, Doug Smith, Siebel Sys-
tems, Satish Thatte, Ivana Trickovic Sap, and Sanjiva Weerawarana Ibm. Business
process execution language for web services, May 2003.

[43] Francisco (Paco) Curbera, Matthew J. Duftler, Rania Khalaf, Nir-
mal Mukhi, William A. Nagy, and Sanjiva Weerawarana. Bpws4j:
A platform for creating and executing bpel4ws processes. Online:
http://www.alphaworks.ibm.com/tech/bpws4j, April 2004.

[44] Jos de Bruijn, Holger Lausen, Axel Polleres, and Dieter Fensel. The web service
modeling language WSML: An overview. In York Sure and John Domingue, edi-
tors, ESWC, volume 4011 of Lecture Notes in Computer Science, pages 590–604.
Springer, 2006.

[45] Yannis Dimopoulos and Pavlos Moraitis. Multi-agent coordination and cooperation
through classical planning. In IAT ’06: Proceedings of the IEEE/WIC/ACM inter-
national conference on Intelligent Agent Technology, pages 398–402, Washington,
DC, USA, 2006. IEEE Computer Society.

[46] John Domingue, Liliana Cabral, Farshad Hakimpour, Denilson Sell, and Enrico
Motta. Irs-iii. a platform and infrastructure for creating wsmo-based semantic web
services. In Proceedings of the Workshop on WSMO Implementations (WIW 2004),
Frankfurt, Germany, 29-30 September 2004.

[47] Daniel Elenius, Grit Denker, David Martin, Fred Gilham, John Khouri, Shahin
Sadaati, and Rukman Senanayake. The OWL-S editor - A development tool for
semantic web services. In Asunción Gómez-Pérez and Jérôme Euzenat, editors,
ESWC, volume 3532 of Lecture Notes in Computer Science, pages 78–92. Springer,
2005.

114

[48] Daniel Elenius, Grit Denker, David Martin, Fred Gilham, John Khouri, Shahin
Sadaati, and Rukman Senanayake. The owl-s editor- a development tool for seman-
tic web services. In Proceedings of 2nd European Semantic Web Conference (ESWC
05), pages 78–92, Heraklion, Crete, Greece, May/June 2005.

[49] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall, August 2005.

[50] Joel Farrell and Holger Lausen. Semantic annotations for wsdl, 2006.

[51] Cristina Feier, Dumitru Roman, Axel Polleres, John Domingue, Michael Stollberg,
and Dieter Fensel. Towards intelligent web services: Web service modeling ontology
(wsmo). In Proceeding of the International Conference on Intelligent Computing
(ICIC), Hefei, China, August 2005.

[52] Ferdian. A comparison of event-driven process chains and uml activity diagram for
denoting business processes. Master’s thesis.

[53] Matthias Flügge and Diana Tourtchaninova. Ontology-derived activity components
for composing travel web services. In Robert Tolksdorf and Rainer Eckstein, editors,
Berliner XML Tage, pages 133–150. XML-Clearinghouse, 2004.

[54] Nadarajan Gayathri and Yun-Heh Chen-Burger. Translating fundamental business
process modelling language to the web services ontology through lightweight map-
ping. In under review process, August 2006.

[55] Gennari, John H., Musen, Mark A., Fergerson, Ray W., Grosso, William E., Monica
Crubezy, Henrik Eriksson, Noy, Natalya F., Tu, and Samson W. The evolution of
protege: an environment for knowledge-based systems development. International
Journal of Human-Computer Studies, 58(1):89–123, 2003.

[56] Beth Gold-Bernstein and William Ruh. Enterprise Integration: The Essential Guide
to Integration Solutions. Addison Wesley Professional, 2004.

[57] Colin Gray. Entrepreneurship, resistance to change and growth in small firms. Jour-
nal of Small Business and Enterprise Devel-opment, 9(1462-6004):61–72, March
2002.

[58] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Henrik
Frystyk Nielsen. SOAP version 1.2 part 1: Messaging framework. World Wide Web
Consortium, Recommendation REC-soap12-part1-20030624, June 2003.

[59] Mike Havey. Essential Business Process Modeling. O’Reilly, August 2005.

[60] Horridge, Matthew, Knublauch, Holger, Rector, Alan, Stevens, Robert, Wroe, and
Chris. A practical guide to building owl ontologies using the protege-owl plugin and
co-ode tools edition 1.0. August 2004.

[61] IBM. Web services architecture overview. Online: http://www-
128.ibm.com/developerworks/library/w-ovr, September 2000.

115

[62] Matjaz Juric and Benny Mathew Poornachandra Sarang. Business Process Execu-
tion Language for Web Services: A Practical Guide to Orchestrating Web Services
Using BPEL4WS. PACKT Publishing, October 2004.

[63] Uwe Keller, Ruben Lara, Holger Lausen, Axel Polleres, and Dieter Fensel. Au-
tomatic location of services. In Proceedings of Second European Semantic Web
Conference (ESWC 2005), pages 1–16, Heraklion, Crete, Greece, May/Jun 2005.

[64] Graham Klyne and Jeremy J. Carroll. Resource description framework (RDF):
Concepts and abstract syntax. World Wide Web Consortium, Recommendation
REC-rdf-concepts-20040210, Feburary 2004.

[65] Holger Knublauch, Mark A. Musen, and Alan L. Rector. Editing description logic
ontologies with the protégé OWL plugin. In Volker Haarslev and Ralf Möller,
editors, Description Logics, volume 104 of CEUR Workshop Proceedings. CEUR-
WS.org, 2004.

[66] Ulrich Küster, Birgitta König-Ries, Mirco Stern, and Michael Klein. Diane: an
integrated approach to automated service discovery, matchmaking and composition.
In WWW ’07: Proceedings of the 16th international conference on World Wide Web,
pages 1033–1042, New York, NY, USA, 2007. ACM Press.

[67] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B. Scherl. golog: a logic programming language for dynamic domains.
Journal of Logic Programming, 1997.

[68] Frank Leymann. Web services flow language (wsfl 1.0), May 2001.

[69] Mohamrnad A. Makhzan and Kwei-Jay Lin. Solutions to a complete web service
discovery and composition. In CEC/EEE, page 73. IEEE Computer Society, 2006.

[70] Daniel J. Mandell and Sheila A. McIlraith. Adapting BPEL4WS for the semantic
web: The bottom-up approach to web service interoperation. In Dieter Fensel, Ka-
tia P. Sycara, and John Mylopoulos, editors, International Semantic Web Confer-
ence, volume 2870 of Lecture Notes in Computer Science, pages 227–241. Springer,
2003.

[71] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila
Mcllraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, Evren
Sirin, Naveen. Srinivasan, and Katia Sycara. Owl-s: Semantic markup for web ser-
vices. Online: http://www.ai.sri.com/daml/services/owl-s/1.2/overview/, March
2006.

[72] David L. Martin, Massimo Paolucci, Sheila A. McIlraith, Mark H. Burstein, Drew V.
McDermott, Deborah L. McGuinness, Bijan Parsia, Terry R. Payne, Marta Sabou,
Monika Solanki, Naveen Srinivasan, and Katia P. Sycara. Bringing semantics to
web services: The OWL-S approach. In Jorge Cardoso and Amit P. Sheth, edi-
tors, SWSWPC, volume 3387 of Lecture Notes in Computer Science, pages 26–42.
Springer, 2004.

116

[73] Deborah L. McGuinness and Frank van Harmelen. OWL web ontology language
overview. World Wide Web Consortium, Recommendation REC-owl-features-
20040210, Feburary 2004.

[74] Jan Mendling, Gustaf Neumann, and Markus Nüttgens. Yet another event-driven
process chain. In Proceedings of 3rd International Conference on Business Pro-
cess Management (BPM 2005), volume LNCS 3649, pages 428–433, Nacy, France,
Septemper 2005.

[75] Harald Meyer, Hagen Overdick, and Mathias Weske. Plængine: A system for auto-
mated service composition and process en-actment. In Proceedings of WWW Service
Composition with Se-mantic Web Services, pages 3–12, University of Technology of
Compiègne.

[76] Herrman Michael and Muhammad Ahtisham Aslam. Mercedes car group (mcg)
enterprise architektur: Ein ansatz zur semantischen modellierung der services in
einer soa. In Integration betrieblicher Informationssysteme: Problemanalysen und
Lösungsansätze des Model-Driven Integration Engineering, Leipziger Beiträge zur
Informatik: Band IV. Leipzig, pages 145–151, September 2006.

[77] John Miller, Kunal Verma, Preeda Rajasekaran, Amit Sheth, Rohit Aggarwal, and
Kaarthik Sivashanmugam. Wsdl-s: Adding semantcis to wsdl. white paper, LSDIS
Lab, University of Georgia, Georgia, USA, July 2004.

[78] Gayathri Nadarajan and Yun-Heh Chen-Burger. An ontology-based conceptual
mapping framework for translating fbpml to the web services ontology. In Proceed-
ings of the 6th IEEE International Symposium on Cluster Computing and the Grid
(CCGRID’06), pages 158–165, Washington, DC, USA, 2006.

[79] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara.
Importing the semantic web in uddi. In Proceedings of E-Services and the Semantic
Web Workshop, pages 225–236, 2002.

[80] Massimo Paolucci, Naveen Srinivasan, Katia P. Sycara, and Takuya Nishimura.
Towards a semantic choreography of web services: From WSDL to DAML-S. In
Liang-Jie Zhang, editor, IWCS, pages 22–26. CSREA Press, 2003.

[81] Peter F. Patel-Schneider. Requirements and non-requirements for a semantic web
rule language. In Rule Languages for Interoperability. W3C, 2005.

[82] Terry R. Payne, Nuria Sanchez, and Domenico Redavid. Semantic web services
bootstrapping meghodology. Technical report, EU-IST Project IST-2004-026460
TAO (TAO: Transitioning Applications to Ontologies), August 2006.

[83] Shankar R. Ponnekanti and Armando Fox. SWORD: A developer toolkit for web
service composition. January 2002.

[84] Preeda Rajasekaran, John A. Miller, Kunal Verma, and Amit P. Sheth. Enhancing
web services description and discovery to facilitate composition. In Jorge Cardoso

117

and Amit P. Sheth, editors, SWSWPC, volume 3387 of Lecture Notes in Computer
Science, pages 55–68. Springer, 2004.

[85] Jinghai Rao and Xiaomeng Su. A survey of automated web service composition
methods. In Jorge Cardoso and Amit P. Sheth, editors, SWSWPC, volume 3387 of
Lecture Notes in Computer Science, pages 43–54. Springer, 2004.

[86] Denilson Sell, Farshad Hakimpour, John Domingue, Enrico Motta, and Roberto
C. S. Pacheco. Interactive composition of wsmo-based semantic web services in
irs-iii. In In proceedings of the First AKT Workshop on Semantic Web Services
(AKT-SWS04) KMi, The Open University, Milton Keynes, UK, December 2004.

[87] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web revisited.
IEEE Intelligent Systems, 21(3):96–101, 2006.

[88] Jun Shen, Georg Grossmann, Yun Yang, Markus Stumptner, Michael Schrefl, and
Thomas Reiter. Analysis of business process integration in web service context. In
FGCS: The International Journal of Grid Computing: Theory, Models and Appli-
cations, number ISSN:0167-739X. Elsevier Publishers, May 2006.

[89] Jun Shen, Jun Yan, and Yun Yang. Swindew-s: Extending p2p workflow systems for
adaptive composite web services. In Proceedings of Australian Software Engineering
Conference (ASWEC 2006), pages 61–69, Sydney, Australia, April 2006.

[90] Jun Shen, Yun Yang, and Bharat Lalwani. Mapping web services specifications to
process ontology: Opportunities and limitations. In Proceedings of the 10th Inter-
national Workshop on Future Trends of Distributed Computing Systems (FTDCS
04), pages 229–235, Suzhou, China, May 2004.

[91] Jun Shen, Yun Yang, and Quang Huy Vu. Swindew-b: A p2p based composite ser-
vice execution system with bpel. In Proceedings of 3rd International Conference on
Service Oriented Computing (ICSOC) Workshop on Dynamic Web Processes (DWP
2005), post-proceedings as IBM RC23822, pages 73–84, Amsterdam, Netherlands,
December 2005.

[92] Jun Shen, Yun Yang, Chengang Wan, and Chuan Zhu. From bpel4ws to owl-s:
Integrating e-business process descriptions. In International Conference on Services
Computing (SCC 2005), pages 181–188, Orlando, FL, USA, July 2005.

[93] Jun Shen, Yun Yang, Chengang Wan, and Chuan Zhu. From BPEL4WS to OWL-S:
Integrating E-business process descriptions. In IEEE SCC, pages 181–190. IEEE
Computer Society, 2005.

[94] Jun Shen, Yun Yang, and Jun Yan. Adapting p2p based decentralised workflow
system swindew-s with web service profile support. In Proceedings of 9th Interna-
tional Conference on Computer Supported Cooperative Work in Design (CSCWD
2005), pages 535–540, Coventry, UK, May 2005.

118

[95] Payam Shodjai. Web services and the microsoft platform. Online:
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-
us/dnwebsrv/html/wsmsplatform.asp, June 2006.

[96] Evren Sirin. Owl-s api. Online: http://www.mindswap.org/2004/owl-s/api/, Au-
gust 2001.

[97] Evren Sirin. Using web ontologies for web service composition. Online:
http://www.mindswap.org/ evren/docs/WebServices.pdf, June 2004.

[98] Evren Sirin, James A. Hendler, and Bijan Parsia. Semi-automatic composition of
web services using semantic descriptions. In Jean Bézivin, Jiankun Hu, and Zahir
Tari, editors, WSMAI, pages 17–24. ICEIS Press, 2003.

[99] Evren Sirin and Bijan Parsia. The owl-s java api. In Third International Semantic
Web Conference (ISWC2004), November 2004.

[100] Evren Sirin, Bijan Parsia, and James Hendler. Template-based composition of
semantic web services. In AAAI Fall Symposium on Agents and the Semantic Web,
Virginia, USA, November 2005.

[101] Evren Sirin, Bijan Parsia, Dan Wu, James A. Hendler, and Dana S. Nau. HTN
planning for web service composition using SHOP2. J. Web Sem, 1(4):377–396,
2004.

[102] Kaarthik Sivashanmugam, Kunal Verma, Amit Sheth, and John Miller. Adding
semantics to web services standards. In Proceedings of the 1st International Con-
ference on Web Services (ISWC’03), pages 395–401, Las Vegas, Nevada, June 2003.

[103] Pervasive Software. Pervasive integration architecture. white paper, Pervasive Soft-
ware, 2005.

[104] Kilian Stillhard and Erik Wilde. XML schema compact syntax (XSCS) version
1.0. Technical Report TIK Report No. 166, Computer Engineering and Networks
Laboratory, ETH Zürich, Zürich, Switzerland, March 2003.

[105] Michael Stollberg, Uwe Keller, and Dieter Fensel. Partner and service discovery for
collaboration establishment with semantic web services. In ICWS, pages 473–480.
IEEE Computer Society, 2005.

[106] Andreas Terzis, Jun Ogawa, Sonia Tsui, Lan Wang, and Lixia Zhang. A proto-
type implementation of the two-tier architecture for differentiated services. In In
RTAS99, Vancouver, Canada, 1999.

[107] Carsten Ullrich. Course generation based on HTN planning. In Mathias Bauer,
Boris Brandherm, Johannes Fürnkranz, Gunter Grieser, Andreas Hotho, Andreas
Jedlitschka, and Alexander Kröner, editors, LWA, pages 74–79. DFKI, 2005.

119

[108] Kunal Verma, Kaarthik Sivashanmugam, Amit Sheth, Abhijit Patil, Swapna Ound-
hakar, and John Miller. Meteor-s wsdi: A scalable infrastructure of registries for
semantic publication and discovery of web services. Journal of Information Tech-
nology and Management, 2004.

[109] Qiang Yang. Intelligent Planning: A Decomposition and Abstraction Based Ap-
proach to Classical Planning. Springer-Verlag, Berlin, 1997.

120

