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Abstract. In this paper, residual vibration of a servomotor driven 

rotating flexible beam is studied. The beam is modeled as an Euler-

Bernoulli beam; it is rotated by a servomotor using triangular velocity 

profile (bang-bang trajectory). Analytical solution is also obtained by 

using Fourier series expansion of the acceleration of the rotating 

beam. Residual vibration amplitudes depend on the beam tip position 

at the end of the rotation, which is the function of rise time (the time 

to complete the rotation). It is found that if the rise time is the odd 

multiple of the beam period 1, 3, 5 …, residual vibration amplitudes 

are maximized. Residual vibration amplitude spectrum shows that for 

rise time to period ratios from 1.5 to 2.5, residual vibration amplitudes 

are lowered to less than 3% of the maximum residual vibration 

amplitude, obtained for rise time, equal to the first natural period of 

the beam. 
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1. Introduction 

Demand for high performance robotic systems quantified by high speed 

operation, high end-position accuracy and lower energy consumption has 

triggered a vigorous research in various multi-disciplinary areas, such as 

design and control of lightweight flexible robot arm. Flexible 

manipulators, although having some inherent advantageous over 

conventional rigid robots, have posed more stringent requirements on the 

control system design, such as accurate end point sensing and fast 

suppression of transient vibration during rapid arm movements. 
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Point to point position control of a flexible beam is studied 

analytically and experimentally in
[1,2]

. Equations for a rotating 

Timoshenko beam are developed for pinned-free and clamped-free 

boundary conditions in
[3]

. Dynamic modeling and optimal control of a 

rotating Euler-Bernoulli beam is studied in
[4]

. Main objective of the paper 

was to control the vibration through force feedback control. Condition of 

a slewing beam using high speed camera system is studied in
[5]

. Results 

show that the natural frequency of the rotating beam is between the 

natural frequencies of fixed-free and free-free beam. Among many
[6-13]

 

are also worth to mention which are related to a rotating flexible beam. A 

residual vibration spectrum for a rotating flexible beam is studied in
[14]

. 

In this study cycloidal rise function is used to rotate the beam. Closed 

loop solution is obtained. Results show that, for frequency ratios of 2, 3, 

4 … residual vibration amplitudes became zero.  

Shina and Brennan
[15]

 considered two methods for controlling the 

residual vibrations of a translating or rotating Euler-Bernoulli cantilever 

beam. Although a beam has an infinite number of vibration modes, when 

it simply changes its position by translation or rotation the first mode is 

the main contributor to the total response. Thus, the problem can be 

reduced to the base acceleration excitation of a single-degree-of-freedom 

system. Two simple methods are suggested for suppressing the residual 

vibration of such a system without considering any control algorithms. 

Input shaping is also a control method that allows much higher 

speeds of motion by limiting vibration induced by the reference 

command. Vaughan, et al.[16] analyze the compromise between rapidity 

of motion and shaper robustness for several input-shaping methods. 

Sorensen and Singhose
[17]

 also studied methods whereby arbitrary 

reference commands may be interpreted as input-shaped commands. 

In this study, servomotor driven flexible beam is considered. 

Triangular velocity profile (bang-bang trajectory) is used to rotate the 

beam. Angular acceleration of the beam is approximated by Fourier 

series and analytic solution is obtained. Residual vibration amplitudes 

depend on the ratio of rise time to the beam vibration period. For ratios of 

1, 3, 5, … residual vibration amplitudes are maximized. It is possible to 

minimize residual vibration by choosing appropriate ratio of rise time to 

beam vibration period.  
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2. Formulation 

2.1 Equation of a Rotating Beam 

Figure 1 shows a rotating flexible beam. Beam is considered as 

fixed-free Euler-Bernoulli beam. OXY is an inertial frame, Oxy is a 

rotating frame attached to the shaft.θ  is a rotation angle of the shaft, y is 

the beam deflection and mb is the unit mass of the beam per length. The 

position vector of mb with respect to the rotating coordinates is 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Rotating flexible beam model. 
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When this inertial load is used and EI is assumed constant then Euler-

Bernoulli equation of the beam will be 
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The governing equation of the motion will be 
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The mode summation method is assumed for the solution which is 
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If the orthogonality condition is used and viscous damping is assumed, 

equation for the generalized coordinate qi is
 [13, 15]
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State space form of the differential Equation (8) can be given as 
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In the simulations only first orthogonal mode is considered. 
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2.2 Servomotor Motion 

Flexible beam is rotated by a servomotor. Velocity profile is 

assumed as triangular which is also called bang-bang trajectory. 

Triangular velocity profile can be given as 
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Here 
max

θ& is the maximum angular velocity and tr is the rise time. If rise 

time tr and rotation angle θ is given, angular velocity and angular 

acceleration of the rotation can be calculated as 
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2.3 Analytic Solution 

Angular acceleration of the beam rotation for triangular velocity 

profile is a rectangular wave which can be approximated by a Fourier 

series as  

⎥⎦

⎤
⎢⎣

⎡
+++= L

&&&& tttt
rrr

ωωω
π

θθ 5sin
5

1
3sin

3

1
sin

4
)(

max
              (17) 

Only first three terms are used. 
r

r

t

π
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=  is the fundamental frequency of 

the Fourier series which is also the rise frequency of the beam. Equation 

(8) can be written again as 
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Solution of the equation (18) is 
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2.4 Simulation 

For the simulation, Equation (11) is solved by using MATLAB 

ODE45 ordinary differential equation solver. Steel beam is used. 

Properties of the steel beam are; elasticity modulus E=207 Pa, mass 

density ρ =7700 3
/mkg , length l=40 cm, width b=24 mm, thickness h = 

0.6 mm. Figures 2 and 3 show the numerical solution  of the equation 

(10) for rise time Tt
r

2.2=  and Tt
r

3= , respectively. The period of the 

beam for the first natural frequency is 32.0=T s ( 73.19=
n

ω  Hz). 
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Damping ratio is assumed as 02.0=ζ . During the rotation, beam was 

moving under inertial load, when the rotation stops, the deflection of the 

beam (at that moment) became an initial displacement for the beam’s 

residual vibration. From the Fig. 2, for 70.02.2 == Tt
r

s, beam tip 

displacement is very small that is why residual vibration amplitudes of 

the beam are small. In Fig. 3, rise time is 3T which is 0.96 s. Beam 

deflection at 0.96 s was bigger than the one for 2.2T that is why residual 

vibration amplitudes were high. Figures 4 and 5 show beam vibration 

during the rotation of the beam for Tt
r

2.2=  and Tt
r

3= , respectively. 

Solid line is for analytical solution, dashed line is for numerical solution, 

which is given in Equation (18). Analytic solution, which uses three term 

Fourier series expansion of the acceleration of the beam predicts well the 

motion of the beam. Depending on the rise time, beam tip amplitude at 

r
tt = is changing. Figure 6 shows this change. Values are scaled with 

respect to the amplitude at m =1. At m = 1, 3, and 5 maximum residual 

vibration amplitudes were making peaks. Between 5.25.1 << m  

maximum vibration amplitude values were less than 3% of the amplitude 

for m = 1. Between 5.45.3 << m  residual vibration amplitudes were less 

than 0.1% of the maximum vibration amplitude for m = 1. These values 

are independent of the beam natural frequency, that is why these results 

will not change for different beams. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Rotating beam vibration for t
r 
= 2.2T. 
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Fig. 3. Rotating beam vibration for t
r
=3T. 

 

 

 

 

 

 

 

 

Fig. 4. Rotational motion of the beam during rise time, t
r 
= 2.2T. 

 

 

 

 

 

 

 

 

Fig. 5. Rotational motion of the beam during rise time, t
r 
= 3T. 
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Fig. 6. Residual vibration maximum amplitude spectrum. 

3. Conclusion 

In this study rotating flexible beam equations are derived. Assuming 

triangular velocity profile for the rotation, analytical and numerical 

solutions are obtained. Rotational acceleration of the beam, which is a 

square wave, is approximated by three term Fourier series expansion. 

Residual vibration maximum amplitude spectrum shows that for the ratio 

of rise time to beam first natural period values of 1, 3, 5, … maximum 

residual vibration amplitudes are maximized, for ratio values of 1.5 to 

2.5, maximum residual vibration amplitudes are less than 3% of the value 

obtained for ratio = 1. For ratio values of 3.5 to 4.5 maximum residual 

vibration amplitudes are less than 0.1% of the value obtained for ratio = 

1. This study shows that it is possible to minimize the residual vibration 

of the rotating flexible beam by selecting proper rise time. 
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