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Abstract.  This paper investigates the employment of Artificial Neural 

Networks (ANN) for a multi-finger robot hand manipulation in which 

the object motion is defined in task-space with respect to six Cartesian 

based coordinates. The approach followed here is to let an ANN learn 

the nonlinear functional relating the entire hand joints positions and 

displacements to object displacement. This is done by considering the 

inverse hand Jacobian, in addition to the interaction between hand 

fingers and the object being grasped and manipulated.  The developed 

network has been trained for several object training patterns and 

postures within a Cartesian based palm dimension. The paper 

demonstrates the proposed algorithm for a four fingered robot hand, 

where inverse hand Jacobian plays an important role in robot hand 

dynamic control. 

Keywords: Robot Hand Manipulation, Artificial Neural Network, 

Inverse Hand Jacobian. 

Nomenclature: 

u&   absolute velocity of  the grasped object ( )T
oo

v ωℜ∈
×16  

CNM hhh ,,  hand   inertia,  centrifugal  and  gravity forces 

Θh   hand joint space vector ℜ∈
×112  

κ h               concatenated hand Jacobian ℜ∈
×1212  

W i  i
th  finger  Jacobian rotation as allied with  object surface 

θ ij               i
th  joint displacement of j

th
 finger   



E.A. Al-Gallaf 20 

φ tip
                   hand  fingertip force vector  ℜ∈

×112    

CNM iii ,,    i
th  finger inertia,  centrifugal  and  gravity forces 

Θi              i
th   finger joint space vector  ℜ∈

×13  

φ par
      particular solution of the fingertip force vector by 

solving ( )ληφφ +=
partip

       

Ζi                control gain of grasp internal forces 

φ
cd               commanded internal forces 

wij               interconnection weight from node i
th  to j

th
 node 

In(xyz)             inertial system frame 

Pi
 (ijk)            frame coordinate at the ith finger point contact 

φtipi               ith  fingertip force vector  φtipi  = ( φx     φy     φz  )
T 

 

Fb              object resultant force vector  ∈ℜ6×1  expressed with 

respect  to the  In(xyz)  coordinate 

η  null space of G  

G                 hand grip transform 

λ  adjusting  vector of the null space solution 

ϕ1f,ϕ2f, ϕ3f,ϕ4f  employed Neural  Networks  activation functions 

L1i , …… L4i      lengths of the ith finger links 

Xi                 hand constrained differential motion 

Enxn                   an identity matrix of  an appropriate dimension 

Wi               ith finger  Jacobian rotation  allied with  the object 

surface 

θij                ith joint displacement of  jth finger   

φtip                     hand  fingertip forces  φTtip   =  (φtip1   φtip2   φtip3   φtip4 ) 

expressed in body coordinate 

ΘΔ k            change in hand joint space vector at a kth interval. 

κ
1−

h               hand  Jacobian  inverse ℜ∈
×1212   

τ h                hand joint torques 

σi1,σi2, σi3  i
th  finger Jacobian  singular values 

E                  neural network objective function for optimization 

u
c

a
Δ               change in actual object Cartesian posture. 
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1.  Introduction 

1.1  Multi-Fingered Robot Hand and the Dynamics of Manipulation 

Artificial Intelligence (AI) and heuristic techniques have been 

introduced by many researchers in the area of robot control and motion 

planning
[1-3]

. The main concern was to employ a mechanism for hand 

motion and dexterous finger maneuver which are totally complicated 

aspects in robot hands. Artificial Neural Network (ANN) are nonlinear, 

global approximation methods. Neural networks have been heavily 

employed in robotics technology such as robot arm visual control as 

introduced by Hashimoto, Kubota, Sato, and Harashima
[4]

, Hashimoto, 

Kubota, Kuduo, and Harashima
[5]

, inverse kinematics problem of six 

degree of freedom robot arm as done by Guez and Ahmed
[6]

, the research 

introduced by  Patrick and Krose
[7]

  in which they employ a real-time 

learning neural robot controller for solving the inverse kinematics 

problem, and the research introduced by Schram, Linden,  Krose, and 

Groen
[8]

, in which they employ an artificial neural network for tracking 

and grasping a moving object observed by a six degree of freedom 

robotics arm system.  

Recently a substantial amount of research has been carried out in the 

subject of dexterous manipulation and hand maneuvers, some including 

the dynamics of the hand
[9]

. Although a four fingered robot hand offers a 

number of positive issues regarding an object manipulation in an 

automated environment, finding a control strategy for forces application 

on an object even at singular task configuration is not an easy task. 

Furthermore, the degree of freedom of a four fingered robot hand 

represents a force redundancy with respect to the manipulated object. 

Hence the use of an optimization technique is one approach to solve the 

excess fingertip forces applied to an object. 

 The problem of Cartesian object manipulation based on the 

employment of hand Jacobian plays an essential role in the area of  

modern robot control. Model-based multi-finger robot hand control has 

been used extensively for accurate fingers positioning. However, the 

employment of hand dynamic model in Cartesian based control does 

require the employment also of the inverse hand Jacobian which is 

indeed a function of the entire hand positioning mechanism. There are a 

large number of proposed algorithms that take into account the problem 
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of computing the hand Jacobian, however, most of these approaches are 

time consuming and their applicability for real time control is not 

feasible.  

Application of damped least-squares solutions to robot control can 

be easily formulated using Singular Value Decomposition (SVD) 

Theorem, and has been proposed as one of the most efficient ways to 

suppress high velocities as found in Ref. [10-12]. SVD has also been 

used in the specification of redundant robot dexterity measures (the 

minimal singular value)
[13]

 and in describing and reshaping the 

manipulability ellipsoid for redundant robots
[14-15]

. Meanwhile, a broader 

application of SVD in real-time robot control has been prevented by its 

massive computational complexity when compared with that of the 

GAUSSIAN elimination (approximately 12×n 3 with respect to 2n3/3 

floating point operations for an n×n  matrix).     

A method has been proposed in Maciejewski and Klein
[12]

 to reduce 

the computational burden by applying the method based on GIVENS 

rotations, through which five to six time reduction in computational time 

is obtained. Two articles that have presented algorithms for the 

computation of multiple-robot dynamics are those by Lilly and Orin
[16]

 

and Rodriguez, Jain, and Kreutz-Delgado
[17]

. Both developed sequential 

algorithms that have a computational complexity of O(mN) where  m  is 

the number of manipulator chains in the system and N is the number of 

degrees of freedom per chain. Previous research contributions in task 

space measure can be found in Klein and Blaho
[13]

,
 
and Dubey and 

Luh
[14]

, Lee
[15]

, where static and dynamic manipulability ellipsoids have 

been introduced. 

1.2   Artificial Neural Networks and Robot Hand Control  

While artificial neural networks have been employed extensively in 

robotics and automation system, for robot arms, in particular, ANN have 

been used for approximating the mapping between object posture and the 

corresponding joint displacement. However, there has been a limited 

number of research articles concerning the employment of ANN in 

dexterous robot hand control and analysis. Example of such research 

papers has been the one discussed by Huan, Iberall, and Bekey
[3]

, where 

they presented an architecture for multi-finger robot hand control via 

neural networks. 
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In addition to this, another employment of artificial neural networks 

has been the one presented by Wohlke
[18]

, where the conception of the 

control system was based on the combination of a neural network 

approach for the adaptation of grasp parameters and a fuzzy logic 

approach for the correction of parameters values given to a conventional 

controller. Zsiros, Baranyi, and Korondi
[19]

 did present a practical 

application of generalized neural networks for a dexterous hand moved 

by shape memory alloys, where the robot hand was controlled by a 

generalized neural network. 

Furthermore, Li-Ren and Taipei
[20]

 have discussed the use of digital 

signal processor (DSP) for fuzzy control of robot hands. In their 

approach, they presented fuzzy control of a multi-fingered robot hand 

using a (DSP), where the DSP has been employed to implement a fuzzy 

control methodology of the seventeen joints which are controlled 

simultaneously. On the other hand, Doersam, Ftikow, and Streit
[21]

 have 

presented a fuzzy logic approach for on-line grasp-force-adaptation,  

which can be used for the control of fine manipulating with a robot hand,  

where a decision making logic that expresses a priori knowledge about 

the force behavior inside the friction cones has been used.     

Caihua and Youlun
[22]

 have discussed the employment of  intelligent 

learning based techniques for a multifingered grasp force planning which 

has been based on Neural-Network. A technique through which an 

evolution strategy (genetic optimization) was employed for learning 

dexterous hand manipulation strategies has been presented by Fuentes 

and Nelson
[23]

, through which they suggested a genetic-based technique 

for optimizing a robot hand grasp configurations to meet defined 

manipulation requirements.    

Fischer, Rapela, and Woern
[24]

 has studied controlling an object's 

pose and the forces between the object and its environment. They, 

advised an object-pose controller with feedback from an object pose 

sensor suits for multi-finger gripper control. Due to the non-linear 

dynamic system behavior in the joints, an effective, easy-adaptable joint 

controller was employed and was based on fuzzy and neural-network 

algorithms, where an exact analytical model for such a case was not 

utilized.  
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1.3   Article Contributed Theme   

The  research structure presented here is novel in the sense that,   

Jacobian hand inverse has been avoided to compute as compared to other 

techniques which used other numerical algorithms to compute the inverse 

via the Singularity Robust Inverse presented earlier by  Maciejewski  and  

Klein
[12]

. By mapping Jacobian hand inverse to a set of neural 

interconnection weights, this facilitates to reduce the computational 

execution time, in addition to the ability to add more training patterns 

that are useful specially once the hand passes through singularity. 

Finding an inverse to hand Jacobian is essential in multi-fingered robot 

hand systems, specifically once mapping some visual object 

displacement information to a set of hand joints displacement. Other 

presented techniques using hand Jacobian inverse have employed 

numerically extensive approaches which are not suitable for real-time 

control, whereas using this technique, mapping object motion to hand 

joints displacement was reduced to a set of neural computed nodes. 

1.4   Article  Structure  

By analyzing and learning the relationship between object 

displacement within the hand palm and robot hand joints, manipulation 

aspects (joint displacement), this architecture provides a level of 

abstraction for generic use. Hence, the article has been divided into seven 

main sections. In Section (1) a review related to neural robot hand control 

is presented. Section (2) presents the hand-object dynamic equation 

formulation, whereas Section (3) presents the object to joint space 

mapping. Neural Network and hand differential motion are presented in 

Section (4) and in Section (5) the researcher presents the used back-

propagation training algorithm. The results of hand simulation are 

presented in Section (6). Finally, Section (7) draws few conclusions. 

2.  Hand-Object System Dynamic Equation Formulation  

2.1  Constrained  Kinematics   

Working under the contact kinematics assumption modeled by a 

frictional point of contact, with each finger we associate three forces 
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( )φφφ
zyx

 defined in terms of a normal force φ
z
 and a resultant  force  

φ
r
  which are decomposed  into two co-planar forces as  expressed by : 

( )φφφφ zyx

T

tipi
=                                           (1) 

where ( )φφφμ
22

yxz
+≤−  and μ is the friction constant at point of 

contact. From Fig. 1-a, each finger maps its joints torque to the object via 

the entire hand grasp transform  ℜ∈
×126

G
 
formulated by Equ. (2) :   

           [ ]GGGGG 4321=                                        (2) 

where grasp sub-matrices ℜ∈
×36

Gi
 for  i  = 1, …, 4  are defined in terms 

of contact location as : 

⎥
⎦

⎤
⎢
⎣

⎡
=

×

Y

I
G

i

i

33

     for   i  = 1, …, 4 

 

Fig. 1. Hand-object frames 

                 a :  Forces distribution. 

                    b :  Gasping coordinates. 
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Where Y i  are matrices performing the skew-matrix of position contact ri  

on the object surface. 

Letting the object motion velocity in the 3-dimensional space be 

designated as u&  in terms of linear ν o
 and angular ωo

 velocities, where: 

    ( )ωoo

T

vu =
&

                                              (3) 

The object velocities at the points of contacts follow the 

corresponding velocities of the fingertips according to the following 

kinematics constraints :  

0=⎥
⎦

⎤
⎢
⎣

⎡
Θ−
⋅

ω

ν

o

o

hh

T

h kG                                                        (4) 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+Θ−⎥

⎦

⎤
⎢
⎣

⎡
=Θ

⋅

⋅

−

⋅
⋅

−

⋅

−

⋅⋅

ω

ν
κκκ

ω

ν

κ

o

o

h

T

hhhh

o

oT

hhh GG
111                                 (5) 

From Equ. (4), joint acceleration constraint is subsequently given by (in 

case of non-singular hand configuration ( ) 0det ≠κ h ) Equ. (5), in which 

the constrained hand joints acceleration depend on the Hand Jacobian 

Inverse κ
1−

h . 

2.2  Multi-Contact Articulated System Dynamics and Control  

The dynamic equation of a four-fingered system is obtained by 

aggregating four equations, where each equation represents the finger 

dynamics :  

φκτ tip

T
hhhhhhh CNM +=+Θ+Θ

⋅⋅⋅

                                  (6) 

whereas the balance equation of the object (object dynamic) :  

    FG btip
−=φ                                                 (7) 

 

2.3   Hand-Object Complete System Dynamic Equation of Motion 

Since fingertips do not slide over the grasped object, velocity of 

object frame at contact locations 
⋅

⋅

Θ= hhcont κν   is derived in terms of joint 
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space relations using Equ. (7). From the fact that the reaction force 

equals the negative of the action force, we are left with the solution of 

Equ (7) : 

( )ληφ +−=
+

FG btip

1                                        (8) 

where G
1+  is the generalized inverse of the hand transform. Equating the 

grasped object dynamics with hand dynamics gives :     

ληκκτκκ
T

hooo

T

hhhhhhh

T

hh CuNuMGCNuGM −⎟
⎠

⎞
⎜
⎝

⎛
++−=+Θ+⎟

⎠

⎞
⎜
⎝

⎛
Θ−

⋅⋅⋅
⋅
+⋅

⋅⋅⋅⋅
− 11        (9) 

where [ ]pppp
z

p
y

p
xu

T
c

d ψφθ=

 

to be the position and 

orientation of the grasped object. Since there is no change at points of 

contacts, this results in 0=⎟
⎠

⎞
⎜
⎝

⎛

∂

∂

t

Gh  although there might be rotational 

change at each point of contact. 

2.4   Cartesian Based PID Hand Control Law  

The main control objective is to steer a grasped object to track a 

defined path (which we shall designate as Task-Space Path), Fig. 1-b.   

In addition to this, the load distribution and internal force control 

balance. Defining the Cartesian based posture error of the grasped object  

ℜ∈
×16

e  : as uue
c

a

c

d −≅  which is the difference between desired position-

orientation vector of the object u
c

d  and the actual position-orientation of 

the object u
c

a
. If the Cartesian position and velocity error vectors are 

given by: 

uue
c

a

c

d −≅       and   
⋅⋅⋅

−≅ uue
c

a

c

d                              (10) 

An object-hand contact system of motion can be described in terms of  

the applied joint  torques τ h : 
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( )

( )TXMh

TGMZ

CuNMGCNGM

exhh

exhhahhcdicd

T

h

hhao

T

hhhhhhahhh

+=

+⎟
⎠

⎞
⎜
⎝

⎛
Θ−Θ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∫ −−+

⎟
⎠

⎞
⎜
⎝

⎛
++Θ+++⎟

⎠

⎞
⎜
⎝

⎛
Θ−Θ=

−

⋅⋅
⋅⋅

+−

⋅
⋅⋅

+
⋅⋅−

⋅⋅
+−

κ

κκηλφφκ

κκκκτ

1

11

111

  (11) 

where :   

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∫+++
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅+⋅=Θ

⋅

⋅⋅

τ

των

0

edkekekoo idp

T

a     and 

( )⎟
⎠

⎞
⎜
⎝

⎛
∫ −−++=
τ

ηλφφκ
0

cdicd

T

hhhex ZCNT  

⎟
⎠

⎞
⎜
⎝

⎛
Θ−Θ=
⋅⋅⋅⋅

+

hhah GX κ
1   ∈ ℜ

12×1
 

In Equ. (11), τ h  is the computed  torque  at  each  joint in the hand, M h , 

N h , and Ch  are the hand dynamics. ( )kkdiagk ppp 61 L≅ , 

( )kkdiagk ddd 61 L≅ ,   and  ( )kkdiagk iii 61 L≅   with k pj  ,  k dj   

and  k ij   > 0  for  all  j  are the corresponding cartesian PID controller 

parameters. In Equ. (11) the computed joints torque are evaluated using 

the Inverse Jacobian matrix which by itself is a composite matrix of the 

four fingers Jacobian.    

The control law defined by Equ. (11) is that it depends on the hand 

inverse kinematics function and the hand inverse Jacobian.  Computation 

of hand kinematics is not an easy task, specially once talking about real-

time hand control. Hence, this is where the potential of employing the 

Artificial Neural Networks in the hand control can be seen. It will 

approximate the nonlinear hand kinematics and provide an easy way of 

computing the hand joints, even without going in deep mathematical 

computation in real time.   

In addition, the difficulty of inverting the matrix κ
T

h , (Hand 

Jacobian) is that it will be a function of the four fingers all together.   
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Furthermore,  the control law specified by Equ. (11) realizes  not only  

the  desired  object  trajectory  but   also   the  desired  internal  grasping  

force,  as  expressed  by  ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∫ −− ηλφφκ cdicd

T

h Z .   

3.  Object to Joint Space Mapping and Nonlinear  

Functional Approximation Problem 

In Section (2), we have been analyzing the hand control law in the 

Cartesian space, and the associated problems of the hand inverse 

kinematics. In order to start analyzing the inverse kinematics problems 

associated with robot hands, let a single contact finger be investigated.   

The problem considered here is the solution of the linear equation 

presented by Equ. (11) which can be rewritten for a single finger as 

follows : 

( ) TXiW iM exiiii
+=

−

κτ

1

                                 (12) 

where ℜ∈
×13

X i  and it is the i
th  decomposed vector of the constrained 

system acceleration  of :  

⎟
⎠

⎞
⎜
⎝

⎛
Θ−Θ=
⋅

⋅
⋅⋅

+

iiiii GX κ
1                                         (13) 

Finding a good mapping between the object Cartesian motion 

parameters ⎟
⎠

⎞
⎜
⎝

⎛
⋅⋅⋅

uuu
c

a

c

a

c

a
 and the associated hand joints Θh  is a crucial 

issue that has been investigated heavily in the literature. The mechanism 

which is being investigated here is that, there is a mapping which can be 

learned and used. Once this mapping is established, it can be utilized for 

the hand controller instead of computing the heavy hand Jacobian. This 

learning mechanism is established via a Neural Networks as will be 

discussed in Section (4).  

4.  Hand Differential Motion and Neural  

Network Mapping Design 

Traditionally, once a multi-finger robot hand controller receives 

sensory information on which the hand motion has to be made, it 
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calculates a trajectory through the inverse kinematics (using hand 

Jacobian). An artificial neural network can be seen as a general 

parametric model that learns to represent a specific input-output 

relationship in terms of object displacement and joints motion. An 

artificial neural network can be used for approximating a function from a 

set of available examples called learning samples or training patterns. For 

the Hand-Object control system, the relation which will be used to train 

the network is defined in terms of some training patterns of object 

Cartesian posture u
c

a
, rate of change of object posture u

c

a
Δ , and rate of 

change of hand joints space  ΘΔ
−1k  as  given by Equ. (14) : 

( )ΘΔΔ=ΘΔ
−1,,, k

c

a

c

aneuralk uuNNf  

( )ΘΔΔ=ΘΔ
−143214321

,,,,,,,,,,, k
c
a

c
aijijijijffffneuralk uuwwwwf Kϕϕϕϕ       (14) 

In Equ. (14),  the computed change in hand joints space ΘΔ k  

is  made a 

function of the neural network structural parameters 

( )K,,,,,,,, 43214321 wwww ijijijijffff ϕϕϕϕ , in addition to the grasped object 

motion parameters ( u
c

a
Δ , u

c

a
, ΘΔ

−1k ). Hence the main purpose of the 

neural network structure is to approximate the nonlinear mapping 

between changes in hand joints to changes in the object position. The 

neural network approximation of  Equ. (14) is used by the hand Cartesian 

PID based controller, which indeed depends on the nonlinear mapping 

between changes in hand joints to changes in the object position. 

Inputs and Output training data from the hand-object system have to 

be prepared and collected  for training,  as depicted in  Fig. 2-a. Inputs to 

the neural network are: Desired Cartesian object positions u
c

a
,  changes 

in such Cartesian positions u
c

a
Δ , one step change in position of the entire 

joints in radians ΘΔ
−1k . The outputs are the required changes in joint 

angles for the entire hand ΘΔ k . The desired object posture values are 

obtained in advance by moving the object to the required position.    

After the neural network learns this relation between input and output 

patterns sufficiently, it shows a nonlinear map between the position and 

orientation of the fingers and those of the object, which usually computed 

using hand Jacobian inverse. 
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4.1   Non-Linear Function Approximation Training 

A layered feed-forward network consists of a certain number of 

layers, and each layer contains a certain number of units. There is an 

input layer, an output layer, and one or more hidden layers between the 

input and the output layer. Each unit receives its inputs directly from the 

previous layer (except for input units) and sends its output directly to 

units in the next layer. Unlike the Recurrent network, which contains 

feedback information, there are no connections from any of the units to 

the inputs of the previous layers nor to other units in the same layer, nor 

to units more than one layer ahead. Every unit only acts as an input to the 

immediate next layer. Obviously, this class of networks is easier to 

analyze theoretically than other general topologies because their outputs 

can be represented with explicit functions of the inputs and the weights.    

In this research we focused on the use of Back-Propagation algorithm 

learning method, where all associated mathematical formulae refer to 

Fig. 2-b. The figure depicts a multi-layer artificial neural net (a four 

layer) being connected to form the entire network which learns using the 

Back-propagation learning algorithm. To train the network and measure 

how well it performs, an objective function must be defined to provide an 

unambiguous numerical rating of system performance. Selection of the 

objective function is very important because the function represents the 

design goals and decides what training algorithm can be taken. For this 

research frame work, a few basic cost functions have been investigated, 

where the sum of squares error function was used as defined by Equ. 

(15): 

∑ −∑=
==

N

i

pipi

P

p

yt
NP

E
1

2

1

)(
1

                                        (15)                 

where p indexes the patterns in the training set, i indexes the output 

nodes, and tpi and ypi are, respectively, the target hand joint space position 

and actual network output for the i
th
 output unit on the p

th
 pattern. An 

illustration of the layered network with the two hidden layers is shown in 

Fig. 2-b. In this network there are i inputs, m hidden units, and n output 

units. The output of the j
th

 hidden unit is obtained by first forming a 

weighted linear combination of the i input values, then adding a bias, 

∑ +=
=

l

i

jijij wxwa

1

0
)1()1(                                      (16) 
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where )1(

ji
w  is the weight from input i to hidden unit j in the first layer and 

)1(

0jw  is the bias for hidden unit j. If we are considering the bias term as 

being weights from an extra input 10 =x , Equ. (16) can be rewritten to 

the form of : 

     ∑=
=

l

i

ijij xwa

0

)1(                                           (17) 

The activation of hidden unit j then can be obtained by transforming the 

linear sum using a nonlinear activation function )(xg : 

)( jj agh =                                             (18) 

The outputs of the network are obtained by transforming the activation of the 

hidden units using a second layer of processing units. For each output unit k, 

first we get the linear combination of the output of the hidden units, 

∑ +=
=

m

j
kjkjk whwa

1

)2(

0

)2(                                             (19) 

absorbing the bias and rewrite the above equation to, 

      ∑=
=

m

j

jkjk hwa
0

)2(                                                   (20) 

Then applying the activation function )(2 xg  to Equ. (20) we can get the 

k
th

  output : 

)(2 kk agy =                                                    (21) 

Combining Equ. (17), Equ. (18), Equ. (20) and Equ. (21) we get the 

complete representation of the network as : 

        ))((2
0 0

)1()2(
∑ ∑=
= =

m

j

l

i

ijikjk xwgwgy                                        (22) 

The network of Fig. 2-b is a network with two hidden layers, which 

can be extended to have more hidden layers easily as long as we make 

the above transformation further. In this manner the error of the network 

is propagated backward recursively through the entire network and all of 

the weights are adjusted so as to minimize the overall network error. The 

network learns the relationship between the previous changes in the joint 
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angles ΘΔ
−1k , changes in the object posture u

c

a
Δ  , and changes joint 

angles ΘΔ k . This is done by executing some random displacements from 

the desired object position and orientation.   

Training Data (Hand and object samples of position) 

Network Network
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(optimization method)

Objective
Function   

Input Desired 

i ou
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Target error +
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Fig. 2.  Neural network structure and training : 

 a : Supervised learning model. 

 b : A four layer  mapping ANN. 



E.A. Al-Gallaf 34 

The hand fingers is set up in the desired position and orientation to 

the object. Different Cartesian based trajectories are then defined and the 

inverse Jacobian were used to compute the associated joints displacement 

Θh(k). Different object postures with joint positions and differential 

changes in joint positions are the input-output patterns for training the 

employed neural network. During the learning epoch, weights of 

connections of neurons and biases are changed so that errors decrease to 

a value close to zero, which resulted in the learning curve that minimizes 

the defined objective function. It should be mentioned at this stage that 

the training process has indeed consumed nearly up to three hours, this is 

due to the large mount of training patterns presented to the neural 

network. 

5. Back-Propagation and Hand-Neural Weight  

Adjustment with Gradient Descent Method 

For the neural network shown in Fig. 2-b, the learning process is 

based on a suitable error function, which is then minimized with respect 

to the weights and bias. Since the network has differential activation 

functions, the activations of the output units become differentiable 

functions of input variables, the weights and bias. Defining the 

differentiable error function of the network outputs as given by Equ. (15), 

then the error function itself is a differentiable function of the weights. 

Therefore, derivative of the error with respect to weights can be 

evaluated, and these derivatives are then used to find the weights that 

minimize the error function, by using the popular gradient descent 

optimization methods.    

5.1  The Learning Process  

For the considered feed-forward network shown in Fig. 2-b,  with the 

chosen differentiable non-linear activation functions and the differential 

error function, each unit j is obtained by first forming a weighted sum of 

its inputs of the form, 

∑=
i

ijij zwa                                             (23) 

 where in Equ. (23),  zi   is the activation of an unit, or input. Apply the 

activation function of Equ. (18), this gives : 
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 )( jj agz =                                             (24) 

One or more of the variables zj  in  Equ. (23) could be a training input 

pattern, in which case we will denote it by xi. Similarly, the unit j in  Equ. 

(24) could be an output unit, which we will denote by yk. The error 

function will be written as a sum, over all patterns in the training set, of 

an error defined for each pattern separately, 

             ∑=
p

pEE , );( WYEEp =                                   (25) 

where p indexes the patterns, Y is the vector of outputs, and W is the 

vector of all weights. Ep can be expressed as a differentiable function of 

the output variable yk. Using Equ. (25), evaluating the derivatives of the 

error functions E with respect to the weights and bias, these derivatives 

as sums over the training set patterns of the derivatives for each pattern 

separately. During the forward pass, for one pattern at a time and with all 

the inputs, the activations of all hidden and output units in the network 

can be computed by successive application of Equ. (23) and Equ. (24). 

Now consider the evaluation of the derivative of the error function Ep 

with respect to some weight wji  using the chain rule :  

                  ij
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j

j
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j
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w
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w
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a

E

w

E
δδ =

∂

∂
=

∂

∂

∂

∂
=

∂

∂
                                  (26) 

where we define 

                 

j

p
j

a

E

∂

∂
=δ                                               (27) 

From equation Equ. (26), the derivative can be obtained by multiplying 

the value of δ for the unit at the output end of the weight by the value of  z for 

the unit at the input. Thus the task becomes to find the δj for the two hidden 

and output units in the network. For the output unit, δk  ; 

     )( k

k

p

k

p
k ag

y

E

a

E
′

∂

∂
=

∂

∂
=δ                                 (28) 

Hidden units can influence the error only through their effects on the 

unit k : 
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∂
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∂

∂
=δ                                        (29) 

The first factor is just the δk of unit k so  
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∂

∂
= δδ                                          (30) 

For the second factor we know that if unit j connects directly to unit k 

then kjjjk wagaa )(′=∂∂ , otherwise it is zero. So we can get the following 

back-propagation formula, 

                                k

k

kjjj wag δδ ∑′= )(                                          (31) 

which means that the values of δ for a particular hidden unit is obtained by 

propagating the δ’s backwards from units later in the network.  Recursively 

applying the equation gets the δ’s for all of the hidden units in a feed-

forward network. With this algorithm, weights are updated in the direction 

in which E decreases along negative gradient, as in Equ. (32) : 

         
ji

ji
w

E
w

∂

∂
−=Δ

+ ητ )1(                                            (32) 

where η is the learning rate,   and α  is the momentum term, 

               )()1( ττ αη ji
ji

ji w
w

E
w Δ+

∂

∂
−=Δ

+                                    (33) 

The weight change is a combination of a step down the negative 

gradient, plus a fraction α of the previous weight change, where 75.0=α . 

In this respect, the used trained ANN structure will rather achieve the 

similar computation done via the hand Jacobian inverse which uses 

numerical routines to achieve such inverse. 

6.   Hand Motion and System Simulation  

Simulation results for the employed multi-finger robot hand with 

twelve degrees of freedom are presented in this section. The multi-layer 

neural network used in the simulation was four layer neural network 

architecture. The network consists of 18 inputs, 12 outputs and 50 hidden 

neurons. The neural net map the 18 inputs characterizing the object 

Cartesian position and hand joint positions into the 12 differential change 

in fingers positions. In order to assess the proposed control algorithm, 
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simulation of a constrained dynamics has been achieved using the 

kinematics and dynamic models of the CYBHAND
[9]

. An object 

sinusoidal motion and path was defined along different axes. At the 

beginning, the hand has been simulated with conventional inverse 

kinematics algorithms, where training patterns have been generated.  

Such training patterns have been based on object Cartesian motion and 

associated joints displacement. The hand has been run for large number 

of trials for producing as large as possible of training patterns.   

6.1 Hand Displacement Training Patterns 

Hand training patterns have been generated by letting the hand 

follow some pre-defined Cartesian trajectory, while holding a grasped 

object of known physical dimensions, as already shown in Fig. 1. The 

hand motion was defined in terms of moving the object center of gravity 

along the y-axis and the z-axis in a sinusoidal fashion. Typical training 

patterns are shown in Fig. 3-a, where the hand has been allowed to follow 

a pre-defined path over 5 sec manipulation time. In Fig. 3-a,  it is 

revealed that:  The object will reach a maximum displacement along the 

y-axis of 0.01 m and a maximum displacement along the z-axis of 0.005, 

then the hand is allowed to move also in different directions with 

different maximum displacement. In this sense, the associated patterns 

u
c

a
Δ ,  u

c

a
,  ΘΔ

−1k   are tabulated in the proper format to be suitable for 

the neural network training. The quantity of the training pattern was 

reaching a size of 500 for a single variable (e.g. u
c

a
Δ ), as presented by 

the plot in Fig. 3-a. Hence to validate the neural network ability to model 

the hand inverse kinematics, the error between a typical neural output 

node (e.g. θ 33 ) with the actual one has been computed and analyzed. For 

instance, Fig. 3-b shows the error histogram of one neural net output 

node, which shows a great deal of slim spread around the zero reference, 

hence validating the ability of the network to reduce the mapping error. 

In addition, Fig. 3-c and Fig. 3-d depict the neural network mapping 

accuracy associated with θ11 and θ33, where it is clearly shown the 

accuracy of the employed neural network system to reconstruct a finger 

joint displacement even from untrained patterns. 
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Fig. 3.  Training patterns and errors : 

 a.  Object motion (y and z axis), training patter generation.  

 b.  Histogram of error between  actual θ33  and neural net output. 

 c.  Validating neural network mapping for θ22  . 

 d.  Validating neural network mapping for θ13  . 
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6.2   Execution Process and Neural-Hand Controller Validation  

Once the neural network has learned the required mapping from the 

presented examples, it is ready to be applied to the hand controller which 

depends heavily on the hand inverse kinematics. Hence the network is 

presented with some object motion directions, where it finds the associated 

hand joint-space used in the hand controller. The execution process starts first 

with employing the trained neural network in the hand dynamic controller 

(which mainly depends on the hand Jacobian inverse). Once the object 

position and orientation have been defined, the neural networks computes the 

associated hand joint positions by presenting the network with some patterns 

which were not included during the training process. Once the neural network 

presented with such pattern, it associates the input patterns with some trained 

joint displacement patterns. Such learned patterns at the neural output nodes 

are then employed in the hand controller.     
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Finally the ANN is employed in the hand controller for the 

calculation of joint displacement as required by the full controller already 

presented by Equ. (11). The ANN has shown it was able to reproduce a 

good mapping mechanism as compared to other full kinematics-based 

relations. The robot hand has been simulated dynamically by MATLAB-

software, where such hand simulation is presented in Fig. 4. For instant, 

Fig. 4-a demonstrates the associated hand joint-space vector Θh  required 

to move the object in a pre-defined  trajectory,  where as  Fig. 4-b shows 

the error associated with the object displacement. Figure 4-c illustrates 

the required torque to move the hand joints, where it is apparent that the 

joint torques are working collectively, not just to move the fingers, but 

the generation of the suitable torques to grasp the object during the 

course of motion. Finally, the associated object displacement with the 

neural controller is shown in Fig. 4-d, where it is showing the ability of 

the hand to move the object along the required axis of motion in a 

smooth manner. 

 

 

 

 

C 

τ 22

τ12, τ 22

τ 11
τ 21 

τ 12

Transient elapse

Task-space object motion error

B

ey ez 

Δey

Δez

D 

νy 

νz

νx

θ12, θ22

Hand joint displacements θ11, θ21 

θ13

θ23

A

Fig. 4  .  Validating the neural hand controller : 

 a. :   Hand joint displacements as ANN used in hand controller. 

 b. :   Object Cartesian error and change in error with ANN hand controller. 

 c. :   Hand torques with neural controller.  

 d. :   3-D defined and real object velocities. 
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However, the implemented hand controller strategy does in fact need 

a large training data to fairly approximate the nonlinear mapping in such 

a way to cover most the non-singular hand working space. Larger 

training patterns could result in longer hand training time and the 

possibility of not getting a convergence neural network. In addition to  

this, there could be the case where passage of the object over singular 

hand posture at which the hand Jacobian inverse is not possible.  

7. Conclusions 

The issue of the inverse dynamics for multi-fingered robot hand has 

been studied where the object motion is defined in a Cartesian based 

system, hence the differential system Jacobian plays an important role.    

In this paper a scheme for the control of a robotic multi-finger has been 

presented. The nonlinear relation between the Cartesian object posture 

and the associated hand joint-space settings and control signals mapping 

was learned via a four layers artificial neural networks trained for most  

possible object displacement. The validity of this control scheme is 

confirmed by computer simulations, where a task-space object motion 

has been defined to move over the y and z axis Cartesian coordinates 

while grasping the object with a stable grasp. This approach is effective 

because it essentially decomposes complex geometric calculations into 

simple mapping of the network. The proposed controller strategy 

however, needs in fact a large training data to fairly approximate the 

nonlinear mapping, in addition to possible passage of the object over 

singular hand posture at which the hand Jacobian inverse is not possible.  
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