
JKAU: Eng. Sci., Vol. 19 No. 1, pp: 19-42 (2008 A.D. / 1429 A.H.)

 19

Neural Networks for Multi-Finger Robot Hand Control

E.A. Al-Gallaf

Department of Electrical and Electronics Engineering,

College of Engineering, University of Bahrain

P.O. Box 13184, Kingdom of Bahrain

ebrgallaf@eng.uob.bh

Abstract. This paper investigates the employment of Artificial Neural

Networks (ANN) for a multi-finger robot hand manipulation in which

the object motion is defined in task-space with respect to six Cartesian

based coordinates. The approach followed here is to let an ANN learn

the nonlinear functional relating the entire hand joints positions and

displacements to object displacement. This is done by considering the

inverse hand Jacobian, in addition to the interaction between hand

fingers and the object being grasped and manipulated. The developed

network has been trained for several object training patterns and

postures within a Cartesian based palm dimension. The paper

demonstrates the proposed algorithm for a four fingered robot hand,

where inverse hand Jacobian plays an important role in robot hand

dynamic control.

Keywords: Robot Hand Manipulation, Artificial Neural Network,

Inverse Hand Jacobian.

Nomenclature:

u& absolute velocity of the grasped object ()T
oo

v ωℜ∈
×16

CNM hhh ,, hand inertia, centrifugal and gravity forces

Θh hand joint space vector ℜ∈
×112

κ h concatenated hand Jacobian ℜ∈
×1212

W i i
th finger Jacobian rotation as allied with object surface

θ ij i
th joint displacement of j

th
 finger

E.A. Al-Gallaf 20

φ tip
 hand fingertip force vector ℜ∈

×112

CNM iii ,, i
th finger inertia, centrifugal and gravity forces

Θi i
th finger joint space vector ℜ∈

×13

φ par
 particular solution of the fingertip force vector by

solving ()ληφφ +=
partip

Ζi control gain of grasp internal forces

φ
cd commanded internal forces

wij interconnection weight from node i
th to j

th
 node

In(xyz) inertial system frame

Pi
 (ijk) frame coordinate at the ith finger point contact

φtipi ith fingertip force vector φtipi = (φx φy φz)
T

Fb object resultant force vector ∈ℜ6×1 expressed with

respect to the In(xyz) coordinate

η null space of G

G hand grip transform

λ adjusting vector of the null space solution

ϕ1f,ϕ2f, ϕ3f,ϕ4f employed Neural Networks activation functions

L1i , …… L4i lengths of the ith finger links

Xi hand constrained differential motion

Enxn an identity matrix of an appropriate dimension

Wi ith finger Jacobian rotation allied with the object

surface

θij ith joint displacement of jth finger

φtip hand fingertip forces φTtip = (φtip1 φtip2 φtip3 φtip4)

expressed in body coordinate

ΘΔ k change in hand joint space vector at a kth interval.

κ
1−

h hand Jacobian inverse ℜ∈
×1212

τ h hand joint torques

σi1,σi2, σi3 i
th finger Jacobian singular values

E neural network objective function for optimization

u
c

a
Δ change in actual object Cartesian posture.

Neural Networks for Multi-Finger Robot Hand Control 21

1. Introduction

1.1 Multi-Fingered Robot Hand and the Dynamics of Manipulation

Artificial Intelligence (AI) and heuristic techniques have been

introduced by many researchers in the area of robot control and motion

planning
[1-3]

. The main concern was to employ a mechanism for hand

motion and dexterous finger maneuver which are totally complicated

aspects in robot hands. Artificial Neural Network (ANN) are nonlinear,

global approximation methods. Neural networks have been heavily

employed in robotics technology such as robot arm visual control as

introduced by Hashimoto, Kubota, Sato, and Harashima
[4]

, Hashimoto,

Kubota, Kuduo, and Harashima
[5]

, inverse kinematics problem of six

degree of freedom robot arm as done by Guez and Ahmed
[6]

, the research

introduced by Patrick and Krose
[7]

 in which they employ a real-time

learning neural robot controller for solving the inverse kinematics

problem, and the research introduced by Schram, Linden, Krose, and

Groen
[8]

, in which they employ an artificial neural network for tracking

and grasping a moving object observed by a six degree of freedom

robotics arm system.

Recently a substantial amount of research has been carried out in the

subject of dexterous manipulation and hand maneuvers, some including

the dynamics of the hand
[9]

. Although a four fingered robot hand offers a

number of positive issues regarding an object manipulation in an

automated environment, finding a control strategy for forces application

on an object even at singular task configuration is not an easy task.

Furthermore, the degree of freedom of a four fingered robot hand

represents a force redundancy with respect to the manipulated object.

Hence the use of an optimization technique is one approach to solve the

excess fingertip forces applied to an object.

 The problem of Cartesian object manipulation based on the

employment of hand Jacobian plays an essential role in the area of

modern robot control. Model-based multi-finger robot hand control has

been used extensively for accurate fingers positioning. However, the

employment of hand dynamic model in Cartesian based control does

require the employment also of the inverse hand Jacobian which is

indeed a function of the entire hand positioning mechanism. There are a

large number of proposed algorithms that take into account the problem

E.A. Al-Gallaf 22

of computing the hand Jacobian, however, most of these approaches are

time consuming and their applicability for real time control is not

feasible.

Application of damped least-squares solutions to robot control can

be easily formulated using Singular Value Decomposition (SVD)

Theorem, and has been proposed as one of the most efficient ways to

suppress high velocities as found in Ref. [10-12]. SVD has also been

used in the specification of redundant robot dexterity measures (the

minimal singular value)
[13]

 and in describing and reshaping the

manipulability ellipsoid for redundant robots
[14-15]

. Meanwhile, a broader

application of SVD in real-time robot control has been prevented by its

massive computational complexity when compared with that of the

GAUSSIAN elimination (approximately 12×n 3 with respect to 2n3/3

floating point operations for an n×n matrix).

A method has been proposed in Maciejewski and Klein
[12]

 to reduce

the computational burden by applying the method based on GIVENS

rotations, through which five to six time reduction in computational time

is obtained. Two articles that have presented algorithms for the

computation of multiple-robot dynamics are those by Lilly and Orin
[16]

and Rodriguez, Jain, and Kreutz-Delgado
[17]

. Both developed sequential

algorithms that have a computational complexity of O(mN) where m is

the number of manipulator chains in the system and N is the number of

degrees of freedom per chain. Previous research contributions in task

space measure can be found in Klein and Blaho
[13]

,

and Dubey and

Luh
[14]

, Lee
[15]

, where static and dynamic manipulability ellipsoids have

been introduced.

1.2 Artificial Neural Networks and Robot Hand Control

While artificial neural networks have been employed extensively in

robotics and automation system, for robot arms, in particular, ANN have

been used for approximating the mapping between object posture and the

corresponding joint displacement. However, there has been a limited

number of research articles concerning the employment of ANN in

dexterous robot hand control and analysis. Example of such research

papers has been the one discussed by Huan, Iberall, and Bekey
[3]

, where

they presented an architecture for multi-finger robot hand control via

neural networks.

Neural Networks for Multi-Finger Robot Hand Control 23

In addition to this, another employment of artificial neural networks

has been the one presented by Wohlke
[18]

, where the conception of the

control system was based on the combination of a neural network

approach for the adaptation of grasp parameters and a fuzzy logic

approach for the correction of parameters values given to a conventional

controller. Zsiros, Baranyi, and Korondi
[19]

 did present a practical

application of generalized neural networks for a dexterous hand moved

by shape memory alloys, where the robot hand was controlled by a

generalized neural network.

Furthermore, Li-Ren and Taipei
[20]

 have discussed the use of digital

signal processor (DSP) for fuzzy control of robot hands. In their

approach, they presented fuzzy control of a multi-fingered robot hand

using a (DSP), where the DSP has been employed to implement a fuzzy

control methodology of the seventeen joints which are controlled

simultaneously. On the other hand, Doersam, Ftikow, and Streit
[21]

 have

presented a fuzzy logic approach for on-line grasp-force-adaptation,

which can be used for the control of fine manipulating with a robot hand,

where a decision making logic that expresses a priori knowledge about

the force behavior inside the friction cones has been used.

Caihua and Youlun
[22]

 have discussed the employment of intelligent

learning based techniques for a multifingered grasp force planning which

has been based on Neural-Network. A technique through which an

evolution strategy (genetic optimization) was employed for learning

dexterous hand manipulation strategies has been presented by Fuentes

and Nelson
[23]

, through which they suggested a genetic-based technique

for optimizing a robot hand grasp configurations to meet defined

manipulation requirements.

Fischer, Rapela, and Woern
[24]

 has studied controlling an object's

pose and the forces between the object and its environment. They,

advised an object-pose controller with feedback from an object pose

sensor suits for multi-finger gripper control. Due to the non-linear

dynamic system behavior in the joints, an effective, easy-adaptable joint

controller was employed and was based on fuzzy and neural-network

algorithms, where an exact analytical model for such a case was not

utilized.

E.A. Al-Gallaf 24

1.3 Article Contributed Theme

The research structure presented here is novel in the sense that,

Jacobian hand inverse has been avoided to compute as compared to other

techniques which used other numerical algorithms to compute the inverse

via the Singularity Robust Inverse presented earlier by Maciejewski and

Klein
[12]

. By mapping Jacobian hand inverse to a set of neural

interconnection weights, this facilitates to reduce the computational

execution time, in addition to the ability to add more training patterns

that are useful specially once the hand passes through singularity.

Finding an inverse to hand Jacobian is essential in multi-fingered robot

hand systems, specifically once mapping some visual object

displacement information to a set of hand joints displacement. Other

presented techniques using hand Jacobian inverse have employed

numerically extensive approaches which are not suitable for real-time

control, whereas using this technique, mapping object motion to hand

joints displacement was reduced to a set of neural computed nodes.

1.4 Article Structure

By analyzing and learning the relationship between object

displacement within the hand palm and robot hand joints, manipulation

aspects (joint displacement), this architecture provides a level of

abstraction for generic use. Hence, the article has been divided into seven

main sections. In Section (1) a review related to neural robot hand control

is presented. Section (2) presents the hand-object dynamic equation

formulation, whereas Section (3) presents the object to joint space

mapping. Neural Network and hand differential motion are presented in

Section (4) and in Section (5) the researcher presents the used back-

propagation training algorithm. The results of hand simulation are

presented in Section (6). Finally, Section (7) draws few conclusions.

2. Hand-Object System Dynamic Equation Formulation

2.1 Constrained Kinematics

Working under the contact kinematics assumption modeled by a

frictional point of contact, with each finger we associate three forces

Neural Networks for Multi-Finger Robot Hand Control 25

()φφφ
zyx

 defined in terms of a normal force φ
z
 and a resultant force

φ
r
 which are decomposed into two co-planar forces as expressed by :

()φφφφ zyx

T

tipi
= (1)

where ()φφφμ
22

yxz
+≤− and μ is the friction constant at point of

contact. From Fig. 1-a, each finger maps its joints torque to the object via

the entire hand grasp transform ℜ∈
×126

G

formulated by Equ. (2) :

 []GGGGG 4321= (2)

where grasp sub-matrices ℜ∈
×36

Gi
 for i = 1, …, 4 are defined in terms

of contact location as :

⎥
⎦

⎤
⎢
⎣

⎡
=

×

Y

I
G

i

i

33

 for i = 1, …, 4

Fig. 1. Hand-object frames

 a : Forces distribution.

 b : Gasping coordinates.

A

Frictional cone

contact surface
Fingertip forces

X-axis

Y-axis

Z-axis

Required trajectory

along the y-axis

Defined trajectory along the z-axis

L11

L41

L13

L12
θ11

θ12

θ13

θ41

Point-finger tip with friction contact

-X -axis

E.A. Al-Gallaf 26

Where Y i are matrices performing the skew-matrix of position contact ri

on the object surface.

Letting the object motion velocity in the 3-dimensional space be

designated as u& in terms of linear ν o
 and angular ωo

 velocities, where:

 ()ωoo

T

vu =
&

 (3)

The object velocities at the points of contacts follow the

corresponding velocities of the fingertips according to the following

kinematics constraints :

0=⎥
⎦

⎤
⎢
⎣

⎡
Θ−
⋅

ω

ν

o

o

hh

T

h kG (4)

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+Θ−⎥

⎦

⎤
⎢
⎣

⎡
=Θ

⋅

⋅

−

⋅
⋅

−

⋅

−

⋅⋅

ω

ν
κκκ

ω

ν

κ

o

o

h

T

hhhh

o

oT

hhh GG
111 (5)

From Equ. (4), joint acceleration constraint is subsequently given by (in

case of non-singular hand configuration () 0det ≠κ h) Equ. (5), in which

the constrained hand joints acceleration depend on the Hand Jacobian

Inverse κ
1−

h .

2.2 Multi-Contact Articulated System Dynamics and Control

The dynamic equation of a four-fingered system is obtained by

aggregating four equations, where each equation represents the finger

dynamics :

φκτ tip

T
hhhhhhh CNM +=+Θ+Θ

⋅⋅⋅

 (6)

whereas the balance equation of the object (object dynamic) :

 FG btip
−=φ (7)

2.3 Hand-Object Complete System Dynamic Equation of Motion

Since fingertips do not slide over the grasped object, velocity of

object frame at contact locations
⋅

⋅

Θ= hhcont κν is derived in terms of joint

Neural Networks for Multi-Finger Robot Hand Control 27

space relations using Equ. (7). From the fact that the reaction force

equals the negative of the action force, we are left with the solution of

Equ (7) :

()ληφ +−=
+

FG btip

1 (8)

where G
1+ is the generalized inverse of the hand transform. Equating the

grasped object dynamics with hand dynamics gives :

ληκκτκκ
T

hooo

T

hhhhhhh

T

hh CuNuMGCNuGM −⎟
⎠

⎞
⎜
⎝

⎛
++−=+Θ+⎟

⎠

⎞
⎜
⎝

⎛
Θ−

⋅⋅⋅
⋅
+⋅

⋅⋅⋅⋅
− 11 (9)

where []pppp
z

p
y

p
xu

T
c

d ψφθ=

to be the position and

orientation of the grasped object. Since there is no change at points of

contacts, this results in 0=⎟
⎠

⎞
⎜
⎝

⎛

∂

∂

t

Gh although there might be rotational

change at each point of contact.

2.4 Cartesian Based PID Hand Control Law

The main control objective is to steer a grasped object to track a

defined path (which we shall designate as Task-Space Path), Fig. 1-b.

In addition to this, the load distribution and internal force control

balance. Defining the Cartesian based posture error of the grasped object

ℜ∈
×16

e : as uue
c

a

c

d −≅ which is the difference between desired position-

orientation vector of the object u
c

d and the actual position-orientation of

the object u
c

a
. If the Cartesian position and velocity error vectors are

given by:

uue
c

a

c

d −≅ and
⋅⋅⋅

−≅ uue
c

a

c

d (10)

An object-hand contact system of motion can be described in terms of

the applied joint torques τ h :

E.A. Al-Gallaf 28

()

()TXMh

TGMZ

CuNMGCNGM

exhh

exhhahhcdicd

T

h

hhao

T

hhhhhhahhh

+=

+⎟
⎠

⎞
⎜
⎝

⎛
Θ−Θ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∫ −−+

⎟
⎠

⎞
⎜
⎝

⎛
++Θ+++⎟

⎠

⎞
⎜
⎝

⎛
Θ−Θ=

−

⋅⋅
⋅⋅

+−

⋅
⋅⋅

+
⋅⋅−

⋅⋅
+−

κ

κκηλφφκ

κκκκτ

1

11

111

 (11)

where :

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∫+++
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅+⋅=Θ

⋅

⋅⋅

τ

των

0

edkekekoo idp

T

a and

()⎟
⎠

⎞
⎜
⎝

⎛
∫ −−++=
τ

ηλφφκ
0

cdicd

T

hhhex ZCNT

⎟
⎠

⎞
⎜
⎝

⎛
Θ−Θ=
⋅⋅⋅⋅

+

hhah GX κ
1 ∈ ℜ

12×1

In Equ. (11), τ h is the computed torque at each joint in the hand, M h ,

N h , and Ch are the hand dynamics. ()kkdiagk ppp 61 L≅ ,

()kkdiagk ddd 61 L≅ , and ()kkdiagk iii 61 L≅ with k pj , k dj

and k ij > 0 for all j are the corresponding cartesian PID controller

parameters. In Equ. (11) the computed joints torque are evaluated using

the Inverse Jacobian matrix which by itself is a composite matrix of the

four fingers Jacobian.

The control law defined by Equ. (11) is that it depends on the hand

inverse kinematics function and the hand inverse Jacobian. Computation

of hand kinematics is not an easy task, specially once talking about real-

time hand control. Hence, this is where the potential of employing the

Artificial Neural Networks in the hand control can be seen. It will

approximate the nonlinear hand kinematics and provide an easy way of

computing the hand joints, even without going in deep mathematical

computation in real time.

In addition, the difficulty of inverting the matrix κ
T

h , (Hand

Jacobian) is that it will be a function of the four fingers all together.

Neural Networks for Multi-Finger Robot Hand Control 29

Furthermore, the control law specified by Equ. (11) realizes not only

the desired object trajectory but also the desired internal grasping

force, as expressed by ()⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∫ −− ηλφφκ cdicd

T

h Z .

3. Object to Joint Space Mapping and Nonlinear

Functional Approximation Problem

In Section (2), we have been analyzing the hand control law in the

Cartesian space, and the associated problems of the hand inverse

kinematics. In order to start analyzing the inverse kinematics problems

associated with robot hands, let a single contact finger be investigated.

The problem considered here is the solution of the linear equation

presented by Equ. (11) which can be rewritten for a single finger as

follows :

() TXiW iM exiiii
+=

−

κτ

1

 (12)

where ℜ∈
×13

X i and it is the i
th decomposed vector of the constrained

system acceleration of :

⎟
⎠

⎞
⎜
⎝

⎛
Θ−Θ=
⋅

⋅
⋅⋅

+

iiiii GX κ
1 (13)

Finding a good mapping between the object Cartesian motion

parameters ⎟
⎠

⎞
⎜
⎝

⎛
⋅⋅⋅

uuu
c

a

c

a

c

a
 and the associated hand joints Θh is a crucial

issue that has been investigated heavily in the literature. The mechanism

which is being investigated here is that, there is a mapping which can be

learned and used. Once this mapping is established, it can be utilized for

the hand controller instead of computing the heavy hand Jacobian. This

learning mechanism is established via a Neural Networks as will be

discussed in Section (4).

4. Hand Differential Motion and Neural

Network Mapping Design

Traditionally, once a multi-finger robot hand controller receives

sensory information on which the hand motion has to be made, it

E.A. Al-Gallaf 30

calculates a trajectory through the inverse kinematics (using hand

Jacobian). An artificial neural network can be seen as a general

parametric model that learns to represent a specific input-output

relationship in terms of object displacement and joints motion. An

artificial neural network can be used for approximating a function from a

set of available examples called learning samples or training patterns. For

the Hand-Object control system, the relation which will be used to train

the network is defined in terms of some training patterns of object

Cartesian posture u
c

a
, rate of change of object posture u

c

a
Δ , and rate of

change of hand joints space ΘΔ
−1k as given by Equ. (14) :

()ΘΔΔ=ΘΔ
−1,,, k

c

a

c

aneuralk uuNNf

()ΘΔΔ=ΘΔ
−143214321

,,,,,,,,,,, k
c
a

c
aijijijijffffneuralk uuwwwwf Kϕϕϕϕ (14)

In Equ. (14), the computed change in hand joints space ΘΔ k

is made a

function of the neural network structural parameters

()K,,,,,,,, 43214321 wwww ijijijijffff ϕϕϕϕ , in addition to the grasped object

motion parameters (u
c

a
Δ , u

c

a
, ΘΔ

−1k). Hence the main purpose of the

neural network structure is to approximate the nonlinear mapping

between changes in hand joints to changes in the object position. The

neural network approximation of Equ. (14) is used by the hand Cartesian

PID based controller, which indeed depends on the nonlinear mapping

between changes in hand joints to changes in the object position.

Inputs and Output training data from the hand-object system have to

be prepared and collected for training, as depicted in Fig. 2-a. Inputs to

the neural network are: Desired Cartesian object positions u
c

a
, changes

in such Cartesian positions u
c

a
Δ , one step change in position of the entire

joints in radians ΘΔ
−1k . The outputs are the required changes in joint

angles for the entire hand ΘΔ k . The desired object posture values are

obtained in advance by moving the object to the required position.

After the neural network learns this relation between input and output

patterns sufficiently, it shows a nonlinear map between the position and

orientation of the fingers and those of the object, which usually computed

using hand Jacobian inverse.

Neural Networks for Multi-Finger Robot Hand Control 31

4.1 Non-Linear Function Approximation Training

A layered feed-forward network consists of a certain number of

layers, and each layer contains a certain number of units. There is an

input layer, an output layer, and one or more hidden layers between the

input and the output layer. Each unit receives its inputs directly from the

previous layer (except for input units) and sends its output directly to

units in the next layer. Unlike the Recurrent network, which contains

feedback information, there are no connections from any of the units to

the inputs of the previous layers nor to other units in the same layer, nor

to units more than one layer ahead. Every unit only acts as an input to the

immediate next layer. Obviously, this class of networks is easier to

analyze theoretically than other general topologies because their outputs

can be represented with explicit functions of the inputs and the weights.

In this research we focused on the use of Back-Propagation algorithm

learning method, where all associated mathematical formulae refer to

Fig. 2-b. The figure depicts a multi-layer artificial neural net (a four

layer) being connected to form the entire network which learns using the

Back-propagation learning algorithm. To train the network and measure

how well it performs, an objective function must be defined to provide an

unambiguous numerical rating of system performance. Selection of the

objective function is very important because the function represents the

design goals and decides what training algorithm can be taken. For this

research frame work, a few basic cost functions have been investigated,

where the sum of squares error function was used as defined by Equ.

(15):

∑ −∑=
==

N

i

pipi

P

p

yt
NP

E
1

2

1

)(
1

 (15)

where p indexes the patterns in the training set, i indexes the output

nodes, and tpi and ypi are, respectively, the target hand joint space position

and actual network output for the i
th
 output unit on the p

th
 pattern. An

illustration of the layered network with the two hidden layers is shown in

Fig. 2-b. In this network there are i inputs, m hidden units, and n output

units. The output of the j
th

 hidden unit is obtained by first forming a

weighted linear combination of the i input values, then adding a bias,

∑ +=
=

l

i

jijij wxwa

1

0
)1()1((16)

E.A. Al-Gallaf 32

where)1(

ji
w is the weight from input i to hidden unit j in the first layer and

)1(

0jw is the bias for hidden unit j. If we are considering the bias term as

being weights from an extra input 10 =x , Equ. (16) can be rewritten to

the form of :

 ∑=
=

l

i

ijij xwa

0

)1((17)

The activation of hidden unit j then can be obtained by transforming the

linear sum using a nonlinear activation function)(xg :

)(jj agh = (18)

The outputs of the network are obtained by transforming the activation of the

hidden units using a second layer of processing units. For each output unit k,

first we get the linear combination of the output of the hidden units,

∑ +=
=

m

j
kjkjk whwa

1

)2(

0

)2((19)

absorbing the bias and rewrite the above equation to,

 ∑=
=

m

j

jkjk hwa
0

)2((20)

Then applying the activation function)(2 xg to Equ. (20) we can get the

k
th

 output :

)(2 kk agy = (21)

Combining Equ. (17), Equ. (18), Equ. (20) and Equ. (21) we get the

complete representation of the network as :

))((2
0 0

)1()2(
∑ ∑=
= =

m

j

l

i

ijikjk xwgwgy (22)

The network of Fig. 2-b is a network with two hidden layers, which

can be extended to have more hidden layers easily as long as we make

the above transformation further. In this manner the error of the network

is propagated backward recursively through the entire network and all of

the weights are adjusted so as to minimize the overall network error. The

network learns the relationship between the previous changes in the joint

Neural Networks for Multi-Finger Robot Hand Control 33

angles ΘΔ
−1k , changes in the object posture u

c

a
Δ , and changes joint

angles ΘΔ k . This is done by executing some random displacements from

the desired object position and orientation.

Training Data (Hand and object samples of position)

Network Network

Training

(optimization method)

Objective
Function

Input Desired

i ou

weight

changes

Target error +

-

A

u
c
a

Δu
c

ΔΘk−

ΔΘk

B

u
c
a

Δu
c

ΔΘk−

y1

y2

yn

…

Hidden

Output

x1

x2

xl

…

x0 h0

Input

bia

)1(
j

w

h2

h1

h1

…

)2 (
kw

bia

h2

h2

h2

…

)3(
kw

bia

ΔΘk

Fig. 2. Neural network structure and training :

 a : Supervised learning model.

 b : A four layer mapping ANN.

E.A. Al-Gallaf 34

The hand fingers is set up in the desired position and orientation to

the object. Different Cartesian based trajectories are then defined and the

inverse Jacobian were used to compute the associated joints displacement

Θh(k). Different object postures with joint positions and differential

changes in joint positions are the input-output patterns for training the

employed neural network. During the learning epoch, weights of

connections of neurons and biases are changed so that errors decrease to

a value close to zero, which resulted in the learning curve that minimizes

the defined objective function. It should be mentioned at this stage that

the training process has indeed consumed nearly up to three hours, this is

due to the large mount of training patterns presented to the neural

network.

5. Back-Propagation and Hand-Neural Weight

Adjustment with Gradient Descent Method

For the neural network shown in Fig. 2-b, the learning process is

based on a suitable error function, which is then minimized with respect

to the weights and bias. Since the network has differential activation

functions, the activations of the output units become differentiable

functions of input variables, the weights and bias. Defining the

differentiable error function of the network outputs as given by Equ. (15),

then the error function itself is a differentiable function of the weights.

Therefore, derivative of the error with respect to weights can be

evaluated, and these derivatives are then used to find the weights that

minimize the error function, by using the popular gradient descent

optimization methods.

5.1 The Learning Process

For the considered feed-forward network shown in Fig. 2-b, with the

chosen differentiable non-linear activation functions and the differential

error function, each unit j is obtained by first forming a weighted sum of

its inputs of the form,

∑=
i

ijij zwa (23)

 where in Equ. (23), zi is the activation of an unit, or input. Apply the

activation function of Equ. (18), this gives :

Neural Networks for Multi-Finger Robot Hand Control 35

)(jj agz = (24)

One or more of the variables zj in Equ. (23) could be a training input

pattern, in which case we will denote it by xi. Similarly, the unit j in Equ.

(24) could be an output unit, which we will denote by yk. The error

function will be written as a sum, over all patterns in the training set, of

an error defined for each pattern separately,

 ∑=
p

pEE ,);(WYEEp = (25)

where p indexes the patterns, Y is the vector of outputs, and W is the

vector of all weights. Ep can be expressed as a differentiable function of

the output variable yk. Using Equ. (25), evaluating the derivatives of the

error functions E with respect to the weights and bias, these derivatives

as sums over the training set patterns of the derivatives for each pattern

separately. During the forward pass, for one pattern at a time and with all

the inputs, the activations of all hidden and output units in the network

can be computed by successive application of Equ. (23) and Equ. (24).

Now consider the evaluation of the derivative of the error function Ep

with respect to some weight wji using the chain rule :

 ij

ji

j

j

ji

j

j

p

ji

p

z
w

a

w

a

a

E

w

E
δδ =

∂

∂
=

∂

∂

∂

∂
=

∂

∂
 (26)

where we define

j

p
j

a

E

∂

∂
=δ (27)

From equation Equ. (26), the derivative can be obtained by multiplying

the value of δ for the unit at the output end of the weight by the value of z for

the unit at the input. Thus the task becomes to find the δj for the two hidden

and output units in the network. For the output unit, δk ;

)(k

k

p

k

p
k ag

y

E

a

E
′

∂

∂
=

∂

∂
=δ (28)

Hidden units can influence the error only through their effects on the

unit k :

j

k

k k

p

j

p
j

a

a

a

E

a

E

∂

∂
∑
∂

∂
=

∂

∂
=δ (29)

The first factor is just the δk of unit k so

E.A. Al-Gallaf 36

j

k

k

k

j

p
j

a

a

a

E

∂

∂
∑=

∂

∂
= δδ (30)

For the second factor we know that if unit j connects directly to unit k

then kjjjk wagaa)(′=∂∂ , otherwise it is zero. So we can get the following

back-propagation formula,

 k

k

kjjj wag δδ ∑′=)((31)

which means that the values of δ for a particular hidden unit is obtained by

propagating the δ’s backwards from units later in the network. Recursively

applying the equation gets the δ’s for all of the hidden units in a feed-

forward network. With this algorithm, weights are updated in the direction

in which E decreases along negative gradient, as in Equ. (32) :

ji

ji
w

E
w

∂

∂
−=Δ

+ ητ)1((32)

where η is the learning rate, and α is the momentum term,

)()1(ττ αη ji
ji

ji w
w

E
w Δ+

∂

∂
−=Δ

+ (33)

The weight change is a combination of a step down the negative

gradient, plus a fraction α of the previous weight change, where 75.0=α .

In this respect, the used trained ANN structure will rather achieve the

similar computation done via the hand Jacobian inverse which uses

numerical routines to achieve such inverse.

6. Hand Motion and System Simulation

Simulation results for the employed multi-finger robot hand with

twelve degrees of freedom are presented in this section. The multi-layer

neural network used in the simulation was four layer neural network

architecture. The network consists of 18 inputs, 12 outputs and 50 hidden

neurons. The neural net map the 18 inputs characterizing the object

Cartesian position and hand joint positions into the 12 differential change

in fingers positions. In order to assess the proposed control algorithm,

Neural Networks for Multi-Finger Robot Hand Control 37

simulation of a constrained dynamics has been achieved using the

kinematics and dynamic models of the CYBHAND
[9]

. An object

sinusoidal motion and path was defined along different axes. At the

beginning, the hand has been simulated with conventional inverse

kinematics algorithms, where training patterns have been generated.

Such training patterns have been based on object Cartesian motion and

associated joints displacement. The hand has been run for large number

of trials for producing as large as possible of training patterns.

6.1 Hand Displacement Training Patterns

Hand training patterns have been generated by letting the hand

follow some pre-defined Cartesian trajectory, while holding a grasped

object of known physical dimensions, as already shown in Fig. 1. The

hand motion was defined in terms of moving the object center of gravity

along the y-axis and the z-axis in a sinusoidal fashion. Typical training

patterns are shown in Fig. 3-a, where the hand has been allowed to follow

a pre-defined path over 5 sec manipulation time. In Fig. 3-a, it is

revealed that: The object will reach a maximum displacement along the

y-axis of 0.01 m and a maximum displacement along the z-axis of 0.005,

then the hand is allowed to move also in different directions with

different maximum displacement. In this sense, the associated patterns

u
c

a
Δ , u

c

a
, ΘΔ

−1k are tabulated in the proper format to be suitable for

the neural network training. The quantity of the training pattern was

reaching a size of 500 for a single variable (e.g. u
c

a
Δ), as presented by

the plot in Fig. 3-a. Hence to validate the neural network ability to model

the hand inverse kinematics, the error between a typical neural output

node (e.g. θ 33) with the actual one has been computed and analyzed. For

instance, Fig. 3-b shows the error histogram of one neural net output

node, which shows a great deal of slim spread around the zero reference,

hence validating the ability of the network to reduce the mapping error.

In addition, Fig. 3-c and Fig. 3-d depict the neural network mapping

accuracy associated with θ11 and θ33, where it is clearly shown the

accuracy of the employed neural network system to reconstruct a finger

joint displacement even from untrained patterns.

E.A. Al-Gallaf 38

- - - 0 1 2 3 4

x
-5

0

2

3

4

5

6

7

Er
ror
hi
st
og
ra
m
of

θ3

3

B

e = Neural output – θ33

Fig. 3. Training patterns and errors :

 a. Object motion (y and z axis), training patter generation.

 b. Histogram of error between actual θ33 and neural net output.

 c. Validating neural network mapping for θ22 .

 d. Validating neural network mapping for θ13 .

Desired y-motion

Real y- motion

Real z- motion

Desired z- motion

A

θ13 output

θ22 output

neural
output

C

D

6.2 Execution Process and Neural-Hand Controller Validation

Once the neural network has learned the required mapping from the

presented examples, it is ready to be applied to the hand controller which

depends heavily on the hand inverse kinematics. Hence the network is

presented with some object motion directions, where it finds the associated

hand joint-space used in the hand controller. The execution process starts first

with employing the trained neural network in the hand dynamic controller

(which mainly depends on the hand Jacobian inverse). Once the object

position and orientation have been defined, the neural networks computes the

associated hand joint positions by presenting the network with some patterns

which were not included during the training process. Once the neural network

presented with such pattern, it associates the input patterns with some trained

joint displacement patterns. Such learned patterns at the neural output nodes

are then employed in the hand controller.

Neural Networks for Multi-Finger Robot Hand Control 39

Finally the ANN is employed in the hand controller for the

calculation of joint displacement as required by the full controller already

presented by Equ. (11). The ANN has shown it was able to reproduce a

good mapping mechanism as compared to other full kinematics-based

relations. The robot hand has been simulated dynamically by MATLAB-

software, where such hand simulation is presented in Fig. 4. For instant,

Fig. 4-a demonstrates the associated hand joint-space vector Θh required

to move the object in a pre-defined trajectory, where as Fig. 4-b shows

the error associated with the object displacement. Figure 4-c illustrates

the required torque to move the hand joints, where it is apparent that the

joint torques are working collectively, not just to move the fingers, but

the generation of the suitable torques to grasp the object during the

course of motion. Finally, the associated object displacement with the

neural controller is shown in Fig. 4-d, where it is showing the ability of

the hand to move the object along the required axis of motion in a

smooth manner.

C

τ 22

τ12, τ 22

τ 11
τ 21

τ 12

Transient elapse

Task-space object motion error

B

ey ez

Δey

Δez

D

νy

νz

νx

θ12, θ22

Hand joint displacements θ11, θ21

θ13

θ23

A

Fig. 4 . Validating the neural hand controller :

 a. : Hand joint displacements as ANN used in hand controller.

 b. : Object Cartesian error and change in error with ANN hand controller.

 c. : Hand torques with neural controller.

 d. : 3-D defined and real object velocities.

E.A. Al-Gallaf 40

However, the implemented hand controller strategy does in fact need

a large training data to fairly approximate the nonlinear mapping in such

a way to cover most the non-singular hand working space. Larger

training patterns could result in longer hand training time and the

possibility of not getting a convergence neural network. In addition to

this, there could be the case where passage of the object over singular

hand posture at which the hand Jacobian inverse is not possible.

7. Conclusions

The issue of the inverse dynamics for multi-fingered robot hand has

been studied where the object motion is defined in a Cartesian based

system, hence the differential system Jacobian plays an important role.

In this paper a scheme for the control of a robotic multi-finger has been

presented. The nonlinear relation between the Cartesian object posture

and the associated hand joint-space settings and control signals mapping

was learned via a four layers artificial neural networks trained for most

possible object displacement. The validity of this control scheme is

confirmed by computer simulations, where a task-space object motion

has been defined to move over the y and z axis Cartesian coordinates

while grasping the object with a stable grasp. This approach is effective

because it essentially decomposes complex geometric calculations into

simple mapping of the network. The proposed controller strategy

however, needs in fact a large training data to fairly approximate the

nonlinear mapping, in addition to possible passage of the object over

singular hand posture at which the hand Jacobian inverse is not possible.

References

[1] Bekey, G., Tomovic, H. and Karplus, W., Knowledge-Based Control of Grasping in

Robot Hands Using Heuristics from Human Motor Skills, IEEE Transactions on Robotics

and Automation, 9(6): 709-721 (1993).

[2] Xi, N., Tran, J. and Bejczy, K., Intelligent Planning and Control for Multi-robot

Coordination: An Event-Based Approach, IEEE Transactions on Robotics and Automation,

12(3): 439-445 (1996) .

[3] Huan, L., Iberall, T. and Bekey, G., Neural Network Architecture for Robot Hand

Control, Proceedings of the IEEE International Conference on Neural Networks, SAN

DIEGO, pp:38-43 (1988).

[4] Hashimoto, H., Kubota, T., Sato, M. and Harashima, F., Visual Control of Robotic

Manipulator Based on Neural Networks, IEEE Transactions on Industrial Electronics,

39(6): 490-495 (1992).

 [5] Hashimoto, H., Kubota, T., Kuduo, M. and Harashima, F., Self-organizing Visual Servo

System Based on Neural Networks, IEEE Control Systems Magazine, pp: 31-36 (1992).

Neural Networks for Multi-Finger Robot Hand Control 41

[6] Guez, A. and Ahmed, Z., Solution to the Inverse Kinematics Problem in Robotics by

Neural Networks, Proceedings of the International Conference on Neural Networks, USA,

(1988).

[7] van der Smagt, P. P. and Krose, J., A Real-time Learning Neural Robot Controller,

Proceedings of the 1991 International Conference on Artificial Neural Networks, ICANN-

91, FINLAND, pp: 351-356 (1991).

[8] Schram, G., Linden, F., Krose, B. and Groen, F., Visual Tracking of Moving Objects

Using a Neural Network Controller, International Journal of Robotics and Autonomous

Systems, 18: 293-299 (1996).

[9] Al-Gallaf, E. and Warwick, K., (CYBHAND) A Four Fingered Dexterous Hand,

Proceedings of the IEEE International Symposium in Signal Processing, Robotics, and

Neural Networks, France, pp: 657-777 (1996).

[10] Maciejewski, A. and Klein, C., Numerical Filtering for the Operation of Robotics

Manipulators through Kinematically Singular Configurations, Journal of Robotics System,

5 (6): 527-552 (1988) .

[11] Nakamura, Y. and Hanafusa, H., Inverse Kinematics Solutions with Singularity

Robustness for Robot Manipulator Control, ASME Journal of Dynamic Systems

Measurement and Control, 108:163-171 (1986).

[12] Maciejewski, A. and Klein, C., The Singular Value Decomposition: Computation and

Applications to Robotics, International Journal of Robotics Research, 8 (6): 63-79 (1989).

[13] Klein, C. and Blaho, B., Dexterity Measures for the Design and Control of Kinematically

Redundant Manipulators, International Journal of Robotics Research, 6 (2): 71-83 (1987).

[14] Dubey, R. and Luh, J., Redundant Robot Control Using Task Based Performance

Measures, Journal of Robotics System, 5 (5): 409-432 (1988) .

[15] Lee, S., Dual Redundant Arm Configuration Optimization with Task-Oriented Dual

Manipulability, IEEE Transactions in Robotics and Automation, 5 (1): 78-97(1989).

[16] Lilly, K. and Orin, D., Efficient Dynamic Simulation for Multiple Chain Robotics

Mechanisms, In: D. Bernard and G. Man (Ed.), Proceedings of 3rd Annual Conference

Aerospace Computational Control, PASADENA, pp:73-87 (1989) .

[17] Rodriguez, G., Jain, A. and Kreutz-Delgado, K., A Spatial Operator Algebra for

Manipulator Modeling and Control, International Journal of Robotics Research, 10: 371-

381 (1991).

[18] Wohlke, G., NEURO-FUZZY Based System Architecture for the Intelligent Control of

Multi-Finger Robot hands, Proceedings of the IEEE International Conference on Fuzzy

Systems, ORLANDO (1994).

[19] Zsiros, P., Baranyi, P. and Korondi, P., A Generalized Neural Network for a Humanoid

Hand, Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE’

2000), PUEBLA, pp: 523-528 (2000).

[20] Li-Ren, L. and Taipei, H., DSP-Based Fuzzy Control of a Multi-fingered Robot Hand,

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,

VANCOUVER (1995).

[21] Doersam, T., Ftikow, S. and Streit, I., Fuzzy-Based Grasp Force Adaptation for Multi-

fingered Robot Hands, Proceedings of the IEEE International Conference on Fuzzy

Systems, 3, ORLANDO (1994).

[22] Caihua, X. and Youlun, X., Neural-Network Based Force Planning for Multifingered

Grasp, International Journal of Robotics and Autonomous Systems, 4:365-375 (1997).

[23] Fuentes, O. and Nelson, R., Learning Dexterous Manipulation Strategies for Multifingered

Robot Hands Using the Evolution Strategy, International Journal of Machine Learning,

31: 223-237(1998).

 [24] Fischer, T., Rapela, D. and Woern, H., Joint Controller for the Object-Pose Controlling

on Multi-finger Grippers, IEEE International Conference on Advanced Intelligent

Mechatronics, GEORGIA (1999).

E.A. Al-Gallaf 42

 �� ���� �	
����
 ��������� �����
� �����
�
������

������ ������ ��������� �����
�

����� ���	
 ��
��	�

������� 	
��
 �	������� 	��� �	���������� 	��������� 	������ ���

� � :����!������� 	����

�������	 . ������� 	
�����
������ ��� ����� ��� ����

�� ������ ���
����� 	!�!"�� �� ��"� #$
���%� ���
���

��!%���� 	
�"��� &��'

(���
�%�� "��)��! &�
�*� .
�� ��

 #� &�
�*� ������ 	!�!"�� �� ��"� #$
����� +, �!"�� !�

 �-�����
����� "�
�� +� "�-��� ��� /
���! ��0�� �' ��%��

�'��)�"�� ��!��� �1"(�)��! ��
�! &�
�*� +�� 2!�0���

��!
3�� 	
�"�� . 	
�����
������ #�4� 5%����� ��� +�!

 ���� 6�
3� 7
8!,
%��! �$"�� 6����� ���
����� �������

�'%� &9�!� ��� �%� ���
����� ������� ������ :�"���)��!

 	�"
�;�! 	
�!%���� <���
�����

(� ��!=�
- +�! 2!�0���

#���!
��
����!
��
'�; ��0�� ���
�� 	
�%�� ��� /
��� .

