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Abstract. This paper describes a C# algorithm for creating efficient 
triangular meshes of highly-irregular 2D domains. The algorithm, 

which is based on the advancing front technique, requires boundary 

nodes as the only input. Basic shapes such as lines, curves, 

rectangles, polygons, circles, and/or ellipses are used to construct the 

domain. Shapes are interactively added to the domain in a sequential 

order. Whenever a shape is added, however, it is directly exploded to 

a set of nodes appended to the end of the domain. Nodes must be 

continuous and must not cross one another. Inside openings of the 

domain are implemented via connector lines; which have a two-way 

trip; one from the boundary to the starting point of the opening and 

the other from the ending point of the opening back to the boundary. 

Nodes are interactively moved or deleted; which allows a variable 

node density to be created easily and which optimizes the final shape 

of the domain. 
The algorithm produces well-conditioned (close-to-

equilateral) triangular elements. An additional smoothing procedure, 

however, is performed by shifting each interior node to the center of 

the surrounding polygon. Numbering of nodes has a definite 

influence on the band width of the coefficient matrix associated with 

the mesh. The smaller the band width, the less storage and amount of 

computation required. The Cuthill-McKee algorithm for renumbering 

mesh nodes is applied. The implementation of the algorithm using 

the C# object-oriented language allows flexibility in programming 

and increases the efficiency in the construction of complex highly-

irregular two-dimensional domains. Examples of created domains 

along with their generated meshes in both simply and multiply 

connected domains are presented. 

 

Keywords: Advancing front technique; finite element triangulation;    

2D mesh generation. 
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Introduction 

Numerical models are extensively used in engineering problems. 
The differential equations of such models are numerically solved using 
either the finite difference or finite element methods. The industry’s 
current modeling interest has revealed a trend towards more flexible 
meshing techniques. The finite element method provides this flexibility, 
in addition to the higher accuracy involved in the method compared to 
finite differences. The first step of the solution method, however, 
requires creating a mesh. The conditioning of mesh elements and the 
numbering scheme of mesh nodes highly influence the efficiency of the 
method. 

Many algorithms have been described in literature for generating 
finite element meshes [1-3, 5-7, 8-14, 15-17]. Briefly, the mesh generators may 
be classified into two broad categories: structured and unstructured. The 
unstructured have now superseded the structured methods due to their 
ease and flexibility to generate meshes of highly-irregular domains. One 
of the well-established unstructured triangulation methods is the 
advancing front method [6, 11, 14, 16]. In this method, nodes and elements 
are created one by one until the domain is completed. When this method 
is combined with element-smoothing and node-renumbering, it produces 
high-quality, close-to-equilateral triangles [14]. Numbering of mesh 
nodes has a definite influence on the band width of the coefficient 
matrix associated with the mesh. The smaller the band width, the less 
storage and amount of computation required [4]. 

The main disadvantage of the method, however, lies with its 
efficiency, where checking the intersection of edges/overlapping of 
elements takes considerable amount of time. In addition, the method 
may fail in cases where front nodes are not fed correctly. Experimenting 
with the method, however, indicated that manual input of front nodes 
frequently results in poor meshes that in many cases require a make-up 
stage to repair. In addition, there is always an optimal representation of 
the initial front of complex boundaries. In some cases where the method 
has failed with a specific front, little editing, e.g., shifting or deleting 
some nodes, while maintaining the same shape of the domain boundary, 
may be required for the advancing front triangulation method to succeed. 
Furthermore, the quality of the generated triangles also improves. 

This paper describes a triangulation algorithm that incorporates the 

above requirements at minimal effort possible. The algorithm is 
implemented using the object-oriented C# programming language, 
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which provides substantial computing and programming advantages and 
allows the mesh generation algorithm to become truly free from human 
interference. Another important aspect of this algorithm is that a 
discussion of the C# implementation, to the best of my knowledge, has 
not yet been made on mesh generation for finite element applications. So 
far, most mesh generation codes have been developed using the 
traditional FORTRAN language, which is a natural choice from the view 
point of continuity in downstream data processing. Such a natural choice 
may not necessarily be the optimal choice. In fact, the use of an object-
oriented language is more desirable for the improved mesh scheme, 
because the paradigm of object-oriented programming allows the 
different parts constituting the mesh to be described easily and naturally 
as if they were real world objects [1]. 

The C# programming language is an evolution of the C and C++. 
It has been designed taking into account many of the best features of 
both languages, while cleaning up their problems. Developing 
applications using C# is much simpler than using C or C++. All OOP 
features such as encapsulation, inheritance, and polymorphism are 
included in C#. The more advanced features of C and C++ that access 
and manipulate the computer memory through pointers may also be 
carried out using C# code marked as unsafe. These advanced capabilities 
in C/C++ are potentially dangerous because it is possible to overwrite 
system-critical blocks of memory. 

Algorithm Description 

The triangulation process of a closed 2D region using the 
advancing front technique is summarized by the following steps [14]: 
Representation of Domain Boundary, Elements’ Generation, Grid 
Smoothing, and Nodes Renumbering. 

1. Representation of Domain Boundary 

A two-dimensional domain is constructed using a sequence of 
connected basic shapes. A basic shape may be a line, curve, rectangle, 
polygon, circle, or ellipse. It may appear on the domain boundary or 
inside the domain as an opening as shown in Fig. 1. To link the internal 
openings to the exterior boundary, however, connector lines are used. 
This forces the internal openings to become part of the exterior 
boundary, and incorporates them into the generation front. Once a basic 
shape is added to the domain, it is directly exploded to a set of points 
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(with predefined spacing, ratio, and direction) appended to the end of the 
domain boundary. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1.  A sequence of connected basic shapes forming a 2D domain. 

 

Nodal x- and y-coordinates of the domain are read in a clockwise 
or counterclockwise direction. Nodal points spacing controls the 
boundary smoothness and the density and quality of the generated grid. 
The boundary shown in Fig. 2 will be referred to as the front. We now 
have an array of connected line segments, S1 , S2 , S3 , ... , SN, arranged 
in a counter clock wise direction as shown in Fig. 2. Lengths of line 
segments, S1 , S2 , S3 , ... , SN , and nodal angles, 1, 2, 3, ...,  N, formed by 
consecutive line segments, are calculated and sorted out, according to 
their magnitude, in an ascending order [14]. 

After the initial construction of the domain, nodes may be moved 
or deleted. On one hand, this helps create flexible domains in minimal 
time. On the other hand, the advancing front method may fail with an 
initial front, so little editing, e.g. shifting or deleting some nodes, while 
maintaining the same shape, may be required for the advancing front 
method to succeed. For example, Fig. 3 displays the same domain of 
Fig. 1 with some front nodes moved or deleted. 

A C# program was written for the Microsoft Windows platform 

with a GUI interface to construct such domains interactively as shown in 
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Fig. 4. Implementation using C# entails creating various objects 
(classes); one for each basic shape and one for the completed domain. 
An overall description of each object is presented next. Furthermore, the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The same domain of Fig. 1 after editing some boundary points. 

 

C# code listing of a sample object (Line object) is given in Appendix A. 
Other objects follow exactly the same concept. A fully-functional 
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Fig. 2. A portion of a closed 2D domain showing the 

connected line segments and the nodal angle. 
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version of the program, written for MS Windows platform, may be 
downloaded from the author's website. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  The C# Windows program displaying the basic shapes menu. 

 

The Line Object 

The data structure of the Line object has the following properties, 
(see Appendix A): 

• begin point of the line, 

• end point of the line, 

• requested point spacing on the line, 

• ratio of last/first point spacing on the line. 
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The Rectangle Object 

The data structure of the rectangle object has the following 
properties: 

• Begin corner of the rectangle that connects the rectangle to the domain, 

• end corner of the rectangle, 

• requested point spacing on the rectangle perimeter, 

• ratio of last/first point spacing on each line of the rectangle, 

• explode direction, clockwise or anticlockwise. 

 

The Polygon Object 

The data structure of the polygon object has the following 
properties: 

• The first point on polygon perimeter that connects the polygon to 
the domain, 

• center of polygon, 

• radius of polygon, 

• number and set of polygon vertices, 

• requested point spacing on polygon perimeter, 

• ratio of last/first point spacing on polygon perimeter, 

• explode direction, clockwise or anticlockwise. 

 

The Circle Object 

The data structure of the circle object has the following properties: 

• The first point on circle perimeter that connects the circle to the domain, 

• center of circle, 

• radius of circle, 

• requested point spacing on circle perimeter, 

• ratio of last/first point spacing on circle perimeter, 

• explode direction, clockwise or anticlockwise. 
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The Ellipse Object 

The data structure of the ellipse object has the following properties: 

• The first point on ellipse perimeter that connects the ellipse to 
the domain, 

• center of ellipse, 

• x- and y- radii of ellipse, 

• requested point spacing on ellipse perimeter, 

• ratio of last/first point spacing on ellipse perimeter, 

• explode direction, clockwise or anticlockwise. 

 

The Lines Object 

The data structure of the lines object has the following properties: 

• requested point spacing on each line, 

• ratio of last/first point spacing on each line, 

• array of lines vertices. 

 

The Curve Object 

The data structure of the curve object has the following properties: 

• requested point spacing on the curve, 

• ratio of last/first point spacing on the curve, 

• array of curve vertices. 

All basic shapes have methods that control the operation and 
facilitate the insertion of the shape into the domain. These methods 
include, (see Appendix A): 

• A mouse down event for recording the first and last points of the shape, 

• A mouse move event for tracing the shape, 

• Two overloads of the drawing event; one for interactive drawing 
and another for drawing the final shape. 
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• Three overloads for explode event: one with default parameters, 
the second with preset parameters, and the third with static parameters, 

• A read method for reading shape properties, 

• A write method for saving shape properties. 

 

The Completed Domain (Path) Object 

The data structure of the completed domain (Path) object has the 
following properties: 

• array of domain vertices, 

• array of domain points, 

• an instance of each basic shape; i.e. rectangle, polygon, circle, 
ellipse, lines, curve. 

Similarly the domain object has methods that control its operation. 
These methods include, (see Appendix A): 

• A mouse down event for recording mouse down events of the 
basic shapes, 

• A mouse move event for recording mouse move events of the 
basic shapes, 

• Two overloads for drawing event; one for interactive drawing 
and another for drawing the final domain. 

• Three overloads for explode event: one with default parameters, 
the second with preset parameters, and the third with static parameters, 

• A read method for reading domain properties, 

• A write method for saving domain properties. 

 

2. Elements Generation 

Elements’ generation process [14] starts at the smallest angle, α, on 

the front. Depending on the value of α, there will be three cases: 

A. α < π/2 

One triangular element is created by connecting the two line 
segments, S2 and S3 as shown in Fig. 5a. 
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Fig. 5(b). Generation of two triangular elements by dividing 

the angle α into two equal angles.
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Fig. 5 (a). Creation of one triangular element by connecting the two line  segments S2 and S3. 

                     

B.  π/2 ≤ α ≤ 5π/6 

Two triangular elements are created. This is done by creating an 
interior node as shown in Fig. 5(b). The position of the node is found in 
such away that  is divided into two equal angles and the length of the 
dividing line segment, S, is given by: 

( )
4321

22
6

1
SSSSS +++=      (1) 
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C. α  > 5π/6 

One triangular element is formed. This is done by creating an 
interior node opposite to the shorter line segment as shown in Fig. 5(c).  
The position of the node is found in such a way that the three sides, S3, 
S6, and S5 are equal. 

The number of nodes is increased by one each time an interior 
node is created.  The position of the created node is checked to see if it is 
located outside the boundary or if it is close to an existing node.  If that 
was the case, then the next smaller angle is taken as the departing 
candidate. The front is updated each time an element is created by 
suppressing old segments and adding the new ones. The elements’ 
generation process is repeated until only four nodes are left on the front 
as shown in Fig. 5(d). This quadrilateral is divided into two triangles. 
Triangles 123 and 134 are formed, if (α2+α4) ≤ (α1+α3). Otherwise, 
triangles 124 and 234, are formed, see Fig. 5(d). 

 

3. Grid Smoothing 

The smoothing process of the generated grid is performed by 
shifting each interior node to the center of the surrounding polygon [14]. 
Let i be an interior node, N be the number of nodes surrounding node i, 
ηi be the set of nodes surrounding node i, xo and yo be the x- and y-
coordinates of node i before smoothing as shown in Fig. 6.  The x- and 
y-coordinates of node i after smoothing, xn and yn, are calculated as 
follows: 

∑
∈
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The distance between the old and new positions of the interior node i is 
given by: 
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Fig. 5(c). Generation of one triangular element on the shorter line segment. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5(d).  The front with four nodes left on it. 

 

On the other hand, the maximum distance, for all free nodes (interior 
nodes that are not fixed by other geometries), is given by: 

 

( )
i
rMAXr =

max
       (5) 

 

Now, if rmax is less than a user-defined tolerance, є, then, 
smoothing is done, else, the smoothing process is repeated for the new 
mesh until rmax is less than the desired tolerance, є. 
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Fig. 6. Location of node i before and after smoothing. 
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4. Nodes Renumbering 

Numbering of grid nodes has a definite influence on the band 
width of the coefficient matrix associated with the grid.  The smaller the 
band width, the less storage and amount of computation required. 
Initially, each generated node is assigned the next node number in the 
grid. Therefore, by the end of the triangulation process, the grid nodes 
will be numbered arbitrarily in an unstructured manner. To find the band 
width of the coefficient matrix associated with a given grid, let: ηi be the 
set containing nodal numbers of node i and all surrounding nodes, η min 
be the minimum number in ηi, ηmax be the maximum number in ηi, then, 
pi and qi are defined as: 

1
max

+−= ip
i

η       (6) 

1
min

+−= ηiq
i

      (7) 

the maximum p and q, for all nodes in the grid, are given by: 
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( )
i

pMAXp =                   (8) 

( )
i

qMAXq =                   (9) 

and finally the bandwidth, ω, is calculated as: 

1−+= qpω                   (10) 

Thus to reduce the band width of the coefficient matrix associated 
with a given grid, the difference ηmax - ηmin should be minimized. The 
Cuthill-McKee algorithm [4] minimizes the band width by renumbering 
grid nodes in such a way that the difference ηmax - ηmin be the minimum. 

To begin with, the number of connections of each node will be 
referred to as the degree of that node. The Cuthill-McKee algorithm will 
be illustrated using the grid shown in Fig. 7(a), before renumbering, and 
the grid shown in Fig. 7(b), after renumbering.  The algorithm can be s-
ummarized in the following steps [4]: 

1. A boundary node with the lowest degree becomes the starting 
node and is given the number 1 (node 5 in Fig. 7(a) becomes node 1 in 
Fig. 7(b)). 

2. All surrounding nodes are numbered successively, in order of 
increasing degree. Nodes numbered in this step constitute the first level 
(dotted curve surrounding nodes 2, 3, and 4 in Fig. 7 (b)). 

3. Move to the next level and start with the lowest number node; 
i.e., node 2. Step 2 is performed for all nodes in this level. Nodes 
numbered in this level constitute the second level. 

Step 3 is repeated until all nodes are numbered. When more than 
one node has the same degree, renumbering is done at each of them and 
the band width is calculated in each case.  The node that gives the 
minimal band width is taken as the right candidate. Structure matrices 
before and after renumbering are shown in Fig. 7(c & d). 

 

Meshed Cases 

Many examples are presented to reveal the power and efficiency of 
the method. The examples include varieties of cases that were presented 
in the literature. The general domain example, however, has been 
designed for the purpose of this paper to check the algorithm’s capability 
to handle all basic shapes simultaneously. 
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Fig. 7(a). Grid with initial numbering (NNM=26, NEM=34). 

 

Fig. 7(b). Numbering of node points using the Cuthill-McKee algorithm   

                (NNM=26, NEM=34, BW=13). 
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Fig. 7(c). Structure of the coefficient matrix associated with the grid shown in Fig. 7(a). 

 

 

 

Fig. 7(d). Structure of the coefficient matrix associated with the grid shown in Fig.        

                 7(b) (band width = 13). 
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Fig. 8(a). Path representation of the domain to be triangulated. 

General Domain 

A general domain that consists of all basic shapes is considered as 
shown in Fig. 8(a). The geometry of this figure has been designed to test 
the algorithm’s capability to handle all shapes simultaneously. The 
domain consists of successive lines, curves, a rectangle, polygons 
(triangle and hexagon), a circle, and an ellipse. The boundary nodes are 
shown as small donuts on the domain boundary. The generated mesh for 
this boundary is shown in Fig. 8(b). Note that a basic shape may be 
included in or excluded from the domain. This is simply accomplished 
by switching node direction, e.g. the ellipse is included in the 
triangulation process, whereas all other figures are excluded from the 
domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8(c) depicts the same domain of Fig. 8(a) after moving and 
deleting some of the boundary points. Note that the ellipse has been 
disconnected from the rest of the shape by only moving one point to 
overlay the other. The program accommodates this by eliminating the 
point with the highest serial number. As a quality check of the generated 
mesh, the connecting point of the two shapes is shown in Fig. 8(d) (node 
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Fig. 8(b). Triangulated domain of Fig. 8(a). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 8(c). Triangulated domain after editing. 
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number 325). Next the points on the upper-left corner of the domain 
were moved downward. One more place on the left side of the domain 
where some points were deleted and the rest were moved a little bit to 
the right. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 8(d). Node numbers of the triangulated domain after editing. 

 

El-Hamalawi Example 

The following example was selected from El-Hamalawi work [5]. 
As he stated that the geometry could be a machine part with narrow 
edges and two holes of different shapes. Figure 9(a) shows the geometry 
with boundary nodes shown as small donuts. Initially a uniform mesh 
was produced as shown in Fig. 9(b), which consisted of 563 nodes and 
966 elements. 
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Fig. 9(b). The generated mesh of El-Hamalawi geometry. 

Fig. 9(a). The geometry of El-Hamalawi example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next a higher node density has been specified on the narrow edges 
of the domain. These are usually problematic when abrupt changes in 
element sizes occur. Figure 9(c) displays boundary node numbers which 
may not be visibly well in the denser area. Figure 9(d) shows the domain 
after triangulation, which consisted of 1445 nodes and 2585 elements. 
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Fig. 9(c). El-Hamalawi geometry with higher node density at the narrow edges. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 9(d). El-Hamalawi geometry after triangulation. 
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Fig. 9(e). El-Hamalawi example with lesser node density at the right side of the domain. 

 

Finally, for El-Hamalawi example, we required lesser node density 
at the right side of the domain as shown in Fig. 9(e). A total of 307 
nodes were used to describe the front. The generated mesh consisted of 
1198 nodes and 2104 elements. The bandwidth of the mesh coefficient 
matrix before node renumbering is 2181 and after renumbering is only 
87 as shown in Fig. 9(f). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 9(f). The coefficient matrix of El-Hamalawi example as shown in Fig. 9(e). 
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Fig. 10(a). Owen’s model as presented in Ref. 

Fig. 10(b). Owen’s model after triangulation. 

Owen's Model 

Figure 10(a) is an example of applying this algorithm to Owen's 
model as described in Ref. [8]; which consists of an external rectangle 
with a square and circle inside. The Fig. shows boundary nodes as small 
donuts on the boundary. Figure 10(b) displays the model after 
triangulation is completed with higher node density around the circle 
perimeter. 
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Fig. 11(b). Triangulated elliptical domain. 

Fig. 11(a). An elliptical domain with an off circle inside. 

Bastian Modified Example 

The following modified example was selected from Bastian [1]. It 
considers a case where a small hole has been added off center from a 
large ellipse. Higher node density has been specified on the right side of 
the domain as shown in Fig. 11a. The final mesh after smoothing is 
shown in Fig. 11b. 
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Fig. 12(a). Hand domain to be triangulated. 

Fig. 12(b). Triangulated hand domain. 

Highly-Irregular (Hand) Example 

Figure 12(a) shows a hand example which represents a highly-
curved region. Cubic-spline sets of curves were used to trace the hand. 
The hand is scanned in a clockwise direction. A cubic spline 
interpolation routine was used to explode the curve into a set of 
boundary nodes. Figure 12(b) depicts the triangulated domain. Note how 
the triangles are denser at the finger tips and pits. 
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Conclusions 

A method for creating efficient finite element grids was illustrated.  
The method is simple, fast, and requires minimal input.  The method is 
an improved version of the advancing front technique as described in 
Ref. [14].  Examples were presented to illustrate the simplicity and 
efficiency of the method. 

From an efficiency point of view, the mesh generation process is 
divided into two parts: path representation and domain triangulation. 
The path representation step may be thoroughly managed using object-
oriented programming languages. The C# language offers this 
capability. The algorithm presented in this paper is developed using the 
C# object-oriented language. It facilitates the creation of initial fronts for 
the advancing front triangulation schemes. It almost eliminates user 
interference. Furthermore, it allows for any combination of basic shapes 
in any order. 

The ability to start with a primitive shape (rectangle, polygon, 
circle, or ellipse) and switch to a path (a set of lines and/or curves) 
makes it flexible to trace highly-irregular and complex shapes. The path 
object outputs the domain boundary as a set of points (nodes) arranged 
successively in a clockwise or anticlockwise direction. This output 
becomes an input to the mesh generation object. The way a region path 
is traced has a very strong influence on the quality of the generated 
mesh. 
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Appendix (A) 

A listing of the Line class 
 

public class Line 

{ 

// User-input fields 

 public PointF b; // begin point of line 

 public PointF e; // end point of line 

 public float  s; // requested point spacing on line 

 public float  r; // ratio of last/first point spacing 

on line 

 

 // Class-required fields 

 public byte nClickLMB; // click number of left mouse 

button 

 public PointF pt;  // tracking point 

 public bool isFinished; // drawing status 

 

 public Line( ) 

 { 

  Clear(); 

 } 

 

 public void Clear( ) 

 { 

  this.b   = PointF.Empty; 

  this.e   = PointF.Empty; 

  this.s   = 0; 

  this.r   = 0; 

  this.nClickLMB = 0; 

  this.pt  = PointF.Empty; 

  this.isFinished = false; 

 } 

 

 public void MouseDown(object sender, 

System.Windows.Forms.MouseEventArgs mea) 

 { 

  if(mea.Button == 

System.Windows.Forms.MouseButtons.Left) 

  { 

   this.nClickLMB++; 

   if(this.nClickLMB == 1) 

   { 

    this.b = new PointF(mea.X, mea.Y); 

    this.isFinished = false; 

   } 

   else if(this.nClickLMB == 2) 

   { 

    this.e = new PointF(mea.X, mea.Y); 

    this.isFinished = true; 

   } 

  } 

 } 

 public void MouseMove(object sender, 

System.Windows.Forms.MouseEventArgs mea) 
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 { 

  if(this.nClickLMB == 1) 

  { 

   System.Windows.Forms.Panel panel = 

    (System.Windows.Forms.Panel) sender; 

   Graphics grfx = panel.CreateGraphics(); 

   Draw(grfx, panel.BackColor, this.pt); 

   this.pt = new PointF(mea.X, mea.Y); 

   Draw(grfx, panel.ForeColor, this.pt); 

   grfx.Dispose(); 

  } 

 } 

 

 public void Draw(Graphics grfx, Color clr, PointF pt) 

 { 

  this.e = pt; 

  Pen pen = new Pen(clr); 

  grfx.DrawLine(pen, this.b, this.e); 

  pen.Dispose(); 

 } 

 

 public void Draw(Graphics grfx, Pen pen) 

 { 

  grfx.DrawLine(pen, this.b, this.e); 

 } 

 

 public PointF[] Explode( ) 

 { 

  return Explode(this.b, this.e, this.s, this.r); 

 } 

 

 public PointF[] Explode(float s, float r) 

 { 

  return Explode(this.b, this.e, s, r); 

 } 

 

 public static PointF[] Explode(PointF b, PointF e, float 

es, float r) 

 { 

  // This function explodes a line into a set of 

points 

  decimal l = (decimal) 

TriGrid.PathComponent.Point.Distance(b, e); 

  decimal s = (decimal) es; 

  int n     = (int) (l/s); 

  PointF[] points = new PointF[n+1]; 

  points[0] = b; 

  points[n] = e; 

  if(n <= 1) return points; 

  decimal Sum = 0.0m; 

  for(int c = 0; c < n; c++) 

   Sum += (1 + c*((decimal) r- 1.0m)/(n-1)); 

  decimal ss = l/Sum; 

  decimal[] sl = new decimal[n]; 

  for(int c = 0; c < n; c++) 
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   sl[c] = ss + c*((decimal) r - 1.0m)*ss/(n-

1); 

  PointF p = new PointF(e.X-b.X, e.Y-b.Y); 

  float a  = TriGrid.PathComponent.Point.XAngle(p); 

  for(int c = 1; c < n; c++) 

  { 

   points[c].X = points[c-1].X + ((float) 

(sl[c-1]*((decimal) 

System.Math.Cos(a)))); 

   points[c].Y = points[c-1].Y + ((float) 

(sl[c-1]*((decimal) 

System.Math.Sin(a)))); 

  } 

  return points; 

 } 

 

 public void Write(StreamWriter sw) 

 { 

  sw.WriteLine(this.b.X.ToString()); 

  sw.WriteLine(this.b.Y.ToString()); 

  sw.WriteLine(this.e.X.ToString()); 

  sw.WriteLine(this.e.Y.ToString()); 

  sw.WriteLine(this.s.ToString()); 

  sw.WriteLine(this.r.ToString()); 

 } 

 

 public void Read(StreamReader sr) 

 { 

  this.b = new PointF(float.Parse( sr.ReadLine() ), 

   float.Parse( sr.ReadLine() )); 

  this.e = new PointF(float.Parse( sr.ReadLine() ), 

   float.Parse( sr.ReadLine() )); 

  this.s = float.Parse( sr.ReadLine() ); 

  this.r = float.Parse( sr.ReadLine() ); 

 } 

} 
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