
JKAU: Eng. Sci., Vol 17 No. 2, pp: 41 - 72 (2006A.D. /1427 A.H.)

A C# Algorithm for Creating Triangular Meshes of

Highly-Irregular 2D Domains Using the Advancing

Front Technique

Hassan S. Naji

Petroleum Geology and Sedimentology Department,

Faculty of Earth Sciences, King Abdulaziz University,

Jeddah, Saudi Arabia
hassan@petrobjects.com & petrobjects.com

Abstract. This paper describes a C# algorithm for creating efficient
triangular meshes of highly-irregular 2D domains. The algorithm,

which is based on the advancing front technique, requires boundary

nodes as the only input. Basic shapes such as lines, curves,

rectangles, polygons, circles, and/or ellipses are used to construct the

domain. Shapes are interactively added to the domain in a sequential

order. Whenever a shape is added, however, it is directly exploded to

a set of nodes appended to the end of the domain. Nodes must be

continuous and must not cross one another. Inside openings of the

domain are implemented via connector lines; which have a two-way

trip; one from the boundary to the starting point of the opening and

the other from the ending point of the opening back to the boundary.

Nodes are interactively moved or deleted; which allows a variable

node density to be created easily and which optimizes the final shape

of the domain.
The algorithm produces well-conditioned (close-to-

equilateral) triangular elements. An additional smoothing procedure,

however, is performed by shifting each interior node to the center of

the surrounding polygon. Numbering of nodes has a definite

influence on the band width of the coefficient matrix associated with

the mesh. The smaller the band width, the less storage and amount of

computation required. The Cuthill-McKee algorithm for renumbering

mesh nodes is applied. The implementation of the algorithm using

the C# object-oriented language allows flexibility in programming

and increases the efficiency in the construction of complex highly-

irregular two-dimensional domains. Examples of created domains

along with their generated meshes in both simply and multiply

connected domains are presented.

Keywords: Advancing front technique; finite element triangulation;

2D mesh generation.

41

Hassan S. Naji

42

Introduction

Numerical models are extensively used in engineering problems.
The differential equations of such models are numerically solved using
either the finite difference or finite element methods. The industry’s
current modeling interest has revealed a trend towards more flexible
meshing techniques. The finite element method provides this flexibility,
in addition to the higher accuracy involved in the method compared to
finite differences. The first step of the solution method, however,
requires creating a mesh. The conditioning of mesh elements and the
numbering scheme of mesh nodes highly influence the efficiency of the
method.

Many algorithms have been described in literature for generating
finite element meshes [1-3, 5-7, 8-14, 15-17]. Briefly, the mesh generators may
be classified into two broad categories: structured and unstructured. The
unstructured have now superseded the structured methods due to their
ease and flexibility to generate meshes of highly-irregular domains. One
of the well-established unstructured triangulation methods is the
advancing front method [6, 11, 14, 16]. In this method, nodes and elements
are created one by one until the domain is completed. When this method
is combined with element-smoothing and node-renumbering, it produces
high-quality, close-to-equilateral triangles [14]. Numbering of mesh
nodes has a definite influence on the band width of the coefficient
matrix associated with the mesh. The smaller the band width, the less
storage and amount of computation required [4].

The main disadvantage of the method, however, lies with its
efficiency, where checking the intersection of edges/overlapping of
elements takes considerable amount of time. In addition, the method
may fail in cases where front nodes are not fed correctly. Experimenting
with the method, however, indicated that manual input of front nodes
frequently results in poor meshes that in many cases require a make-up
stage to repair. In addition, there is always an optimal representation of
the initial front of complex boundaries. In some cases where the method
has failed with a specific front, little editing, e.g., shifting or deleting
some nodes, while maintaining the same shape of the domain boundary,
may be required for the advancing front triangulation method to succeed.
Furthermore, the quality of the generated triangles also improves.

This paper describes a triangulation algorithm that incorporates the

above requirements at minimal effort possible. The algorithm is
implemented using the object-oriented C# programming language,

A C# Algorithm for Creating Triangular Meshes…

43

which provides substantial computing and programming advantages and
allows the mesh generation algorithm to become truly free from human
interference. Another important aspect of this algorithm is that a
discussion of the C# implementation, to the best of my knowledge, has
not yet been made on mesh generation for finite element applications. So
far, most mesh generation codes have been developed using the
traditional FORTRAN language, which is a natural choice from the view
point of continuity in downstream data processing. Such a natural choice
may not necessarily be the optimal choice. In fact, the use of an object-
oriented language is more desirable for the improved mesh scheme,
because the paradigm of object-oriented programming allows the
different parts constituting the mesh to be described easily and naturally
as if they were real world objects [1].

The C# programming language is an evolution of the C and C++.
It has been designed taking into account many of the best features of
both languages, while cleaning up their problems. Developing
applications using C# is much simpler than using C or C++. All OOP
features such as encapsulation, inheritance, and polymorphism are
included in C#. The more advanced features of C and C++ that access
and manipulate the computer memory through pointers may also be
carried out using C# code marked as unsafe. These advanced capabilities
in C/C++ are potentially dangerous because it is possible to overwrite
system-critical blocks of memory.

Algorithm Description

The triangulation process of a closed 2D region using the
advancing front technique is summarized by the following steps [14]:
Representation of Domain Boundary, Elements’ Generation, Grid
Smoothing, and Nodes Renumbering.

1. Representation of Domain Boundary

A two-dimensional domain is constructed using a sequence of
connected basic shapes. A basic shape may be a line, curve, rectangle,
polygon, circle, or ellipse. It may appear on the domain boundary or
inside the domain as an opening as shown in Fig. 1. To link the internal
openings to the exterior boundary, however, connector lines are used.
This forces the internal openings to become part of the exterior
boundary, and incorporates them into the generation front. Once a basic
shape is added to the domain, it is directly exploded to a set of points

Hassan S. Naji

44

(with predefined spacing, ratio, and direction) appended to the end of the
domain boundary.

Fig. 1. A sequence of connected basic shapes forming a 2D domain.

Nodal x- and y-coordinates of the domain are read in a clockwise
or counterclockwise direction. Nodal points spacing controls the
boundary smoothness and the density and quality of the generated grid.
The boundary shown in Fig. 2 will be referred to as the front. We now
have an array of connected line segments, S1 , S2 , S3 , ... , SN, arranged
in a counter clock wise direction as shown in Fig. 2. Lengths of line
segments, S1 , S2 , S3 , ... , SN , and nodal angles, 1, 2, 3, ..., N, formed by
consecutive line segments, are calculated and sorted out, according to
their magnitude, in an ascending order [14].

After the initial construction of the domain, nodes may be moved
or deleted. On one hand, this helps create flexible domains in minimal
time. On the other hand, the advancing front method may fail with an
initial front, so little editing, e.g. shifting or deleting some nodes, while
maintaining the same shape, may be required for the advancing front
method to succeed. For example, Fig. 3 displays the same domain of
Fig. 1 with some front nodes moved or deleted.

A C# program was written for the Microsoft Windows platform

with a GUI interface to construct such domains interactively as shown in

A C# Algorithm for Creating Triangular Meshes…

45

Fig. 4. Implementation using C# entails creating various objects
(classes); one for each basic shape and one for the completed domain.
An overall description of each object is presented next. Furthermore, the

Fig. 3. The same domain of Fig. 1 after editing some boundary points.

C# code listing of a sample object (Line object) is given in Appendix A.
Other objects follow exactly the same concept. A fully-functional

N-2

N-1

N

12

3

4

5

S

S

S

S

S

S

S4

3

2

1

N

N-1

N-2

Fig. 2. A portion of a closed 2D domain showing the

connected line segments and the nodal angle.

Hassan S. Naji

46

version of the program, written for MS Windows platform, may be
downloaded from the author's website.

Fig. 4. The C# Windows program displaying the basic shapes menu.

The Line Object

The data structure of the Line object has the following properties,
(see Appendix A):

• begin point of the line,

• end point of the line,

• requested point spacing on the line,

• ratio of last/first point spacing on the line.

A C# Algorithm for Creating Triangular Meshes…

47

The Rectangle Object

The data structure of the rectangle object has the following
properties:

• Begin corner of the rectangle that connects the rectangle to the domain,

• end corner of the rectangle,

• requested point spacing on the rectangle perimeter,

• ratio of last/first point spacing on each line of the rectangle,

• explode direction, clockwise or anticlockwise.

The Polygon Object

The data structure of the polygon object has the following
properties:

• The first point on polygon perimeter that connects the polygon to
the domain,

• center of polygon,

• radius of polygon,

• number and set of polygon vertices,

• requested point spacing on polygon perimeter,

• ratio of last/first point spacing on polygon perimeter,

• explode direction, clockwise or anticlockwise.

The Circle Object

The data structure of the circle object has the following properties:

• The first point on circle perimeter that connects the circle to the domain,

• center of circle,

• radius of circle,

• requested point spacing on circle perimeter,

• ratio of last/first point spacing on circle perimeter,

• explode direction, clockwise or anticlockwise.

Hassan S. Naji

48

The Ellipse Object

The data structure of the ellipse object has the following properties:

• The first point on ellipse perimeter that connects the ellipse to
the domain,

• center of ellipse,

• x- and y- radii of ellipse,

• requested point spacing on ellipse perimeter,

• ratio of last/first point spacing on ellipse perimeter,

• explode direction, clockwise or anticlockwise.

The Lines Object

The data structure of the lines object has the following properties:

• requested point spacing on each line,

• ratio of last/first point spacing on each line,

• array of lines vertices.

The Curve Object

The data structure of the curve object has the following properties:

• requested point spacing on the curve,

• ratio of last/first point spacing on the curve,

• array of curve vertices.

All basic shapes have methods that control the operation and
facilitate the insertion of the shape into the domain. These methods
include, (see Appendix A):

• A mouse down event for recording the first and last points of the shape,

• A mouse move event for tracing the shape,

• Two overloads of the drawing event; one for interactive drawing
and another for drawing the final shape.

A C# Algorithm for Creating Triangular Meshes…

49

• Three overloads for explode event: one with default parameters,
the second with preset parameters, and the third with static parameters,

• A read method for reading shape properties,

• A write method for saving shape properties.

The Completed Domain (Path) Object

The data structure of the completed domain (Path) object has the
following properties:

• array of domain vertices,

• array of domain points,

• an instance of each basic shape; i.e. rectangle, polygon, circle,
ellipse, lines, curve.

Similarly the domain object has methods that control its operation.
These methods include, (see Appendix A):

• A mouse down event for recording mouse down events of the
basic shapes,

• A mouse move event for recording mouse move events of the
basic shapes,

• Two overloads for drawing event; one for interactive drawing
and another for drawing the final domain.

• Three overloads for explode event: one with default parameters,
the second with preset parameters, and the third with static parameters,

• A read method for reading domain properties,

• A write method for saving domain properties.

2. Elements Generation

Elements’ generation process [14] starts at the smallest angle, α, on

the front. Depending on the value of α, there will be three cases:

A. α < π/2

One triangular element is created by connecting the two line
segments, S2 and S3 as shown in Fig. 5a.

Hassan S. Naji

50

Fig. 5(b). Generation of two triangular elements by dividing

the angle α into two equal angles.

1
S

S

S

S

2

3

4

S

The new generated interior node

1
S

S

S

S

2

3

4

Fig. 5 (a). Creation of one triangular element by connecting the two line segments S2 and S3.

B. π/2 ≤ α ≤ 5π/6

Two triangular elements are created. This is done by creating an
interior node as shown in Fig. 5(b). The position of the node is found in
such away that  is divided into two equal angles and the length of the
dividing line segment, S, is given by:

()
4321

22
6

1
SSSSS +++= (1)

A C# Algorithm for Creating Triangular Meshes…

51

C. α > 5π/6

One triangular element is formed. This is done by creating an
interior node opposite to the shorter line segment as shown in Fig. 5(c).
The position of the node is found in such a way that the three sides, S3,
S6, and S5 are equal.

The number of nodes is increased by one each time an interior
node is created. The position of the created node is checked to see if it is
located outside the boundary or if it is close to an existing node. If that
was the case, then the next smaller angle is taken as the departing
candidate. The front is updated each time an element is created by
suppressing old segments and adding the new ones. The elements’
generation process is repeated until only four nodes are left on the front
as shown in Fig. 5(d). This quadrilateral is divided into two triangles.
Triangles 123 and 134 are formed, if (α2+α4) ≤ (α1+α3). Otherwise,
triangles 124 and 234, are formed, see Fig. 5(d).

3. Grid Smoothing

The smoothing process of the generated grid is performed by
shifting each interior node to the center of the surrounding polygon [14].
Let i be an interior node, N be the number of nodes surrounding node i,
ηi be the set of nodes surrounding node i, xo and yo be the x- and y-
coordinates of node i before smoothing as shown in Fig. 6. The x- and
y-coordinates of node i after smoothing, xn and yn, are calculated as
follows:

∑
∈

=

N

j

jn

i

x
N

x

η

1
 (2)

∑
∈

=

N

j

jn

i

y
N

y
η

1 (3)

The distance between the old and new positions of the interior node i is
given by:

() ()2
0

2

0
yyxxr

nni
−+−= (4)

Hassan S. Naji

52

S

S

S

2

3

4

The new generated interior node

S
5

S
6

1

2

3

4

1

2

4

3

Fig. 5(c). Generation of one triangular element on the shorter line segment.

Fig. 5(d). The front with four nodes left on it.

On the other hand, the maximum distance, for all free nodes (interior
nodes that are not fixed by other geometries), is given by:

()
i
rMAXr =

max
 (5)

Now, if rmax is less than a user-defined tolerance, є, then,
smoothing is done, else, the smoothing process is repeated for the new
mesh until rmax is less than the desired tolerance, є.

A C# Algorithm for Creating Triangular Meshes…

53

Fig. 6. Location of node i before and after smoothing.

Before Smoothing After Smoothing

(x
o
, y

o
)

(x
n
, y

n
)

4. Nodes Renumbering

Numbering of grid nodes has a definite influence on the band
width of the coefficient matrix associated with the grid. The smaller the
band width, the less storage and amount of computation required.
Initially, each generated node is assigned the next node number in the
grid. Therefore, by the end of the triangulation process, the grid nodes
will be numbered arbitrarily in an unstructured manner. To find the band
width of the coefficient matrix associated with a given grid, let: ηi be the
set containing nodal numbers of node i and all surrounding nodes, η min
be the minimum number in ηi, ηmax be the maximum number in ηi, then,
pi and qi are defined as:

1
max

+−= ip
i

η (6)

1
min

+−= ηiq
i

 (7)

the maximum p and q, for all nodes in the grid, are given by:

Hassan S. Naji

54

()
i

pMAXp = (8)

()
i

qMAXq = (9)

and finally the bandwidth, ω, is calculated as:

1−+= qpω (10)

Thus to reduce the band width of the coefficient matrix associated
with a given grid, the difference ηmax - ηmin should be minimized. The
Cuthill-McKee algorithm [4] minimizes the band width by renumbering
grid nodes in such a way that the difference ηmax - ηmin be the minimum.

To begin with, the number of connections of each node will be
referred to as the degree of that node. The Cuthill-McKee algorithm will
be illustrated using the grid shown in Fig. 7(a), before renumbering, and
the grid shown in Fig. 7(b), after renumbering. The algorithm can be s-
ummarized in the following steps [4]:

1. A boundary node with the lowest degree becomes the starting
node and is given the number 1 (node 5 in Fig. 7(a) becomes node 1 in
Fig. 7(b)).

2. All surrounding nodes are numbered successively, in order of
increasing degree. Nodes numbered in this step constitute the first level
(dotted curve surrounding nodes 2, 3, and 4 in Fig. 7 (b)).

3. Move to the next level and start with the lowest number node;
i.e., node 2. Step 2 is performed for all nodes in this level. Nodes
numbered in this level constitute the second level.

Step 3 is repeated until all nodes are numbered. When more than
one node has the same degree, renumbering is done at each of them and
the band width is calculated in each case. The node that gives the
minimal band width is taken as the right candidate. Structure matrices
before and after renumbering are shown in Fig. 7(c & d).

Meshed Cases

Many examples are presented to reveal the power and efficiency of
the method. The examples include varieties of cases that were presented
in the literature. The general domain example, however, has been
designed for the purpose of this paper to check the algorithm’s capability
to handle all basic shapes simultaneously.

A C# Algorithm for Creating Triangular Meshes…

55

Fig. 7(a). Grid with initial numbering (NNM=26, NEM=34).

Fig. 7(b). Numbering of node points using the Cuthill-McKee algorithm

 (NNM=26, NEM=34, BW=13).

Hassan S. Naji

56

Fig. 7(c). Structure of the coefficient matrix associated with the grid shown in Fig. 7(a).

Fig. 7(d). Structure of the coefficient matrix associated with the grid shown in Fig.

 7(b) (band width = 13).

A C# Algorithm for Creating Triangular Meshes…

57

Fig. 8(a). Path representation of the domain to be triangulated.

General Domain

A general domain that consists of all basic shapes is considered as
shown in Fig. 8(a). The geometry of this figure has been designed to test
the algorithm’s capability to handle all shapes simultaneously. The
domain consists of successive lines, curves, a rectangle, polygons
(triangle and hexagon), a circle, and an ellipse. The boundary nodes are
shown as small donuts on the domain boundary. The generated mesh for
this boundary is shown in Fig. 8(b). Note that a basic shape may be
included in or excluded from the domain. This is simply accomplished
by switching node direction, e.g. the ellipse is included in the
triangulation process, whereas all other figures are excluded from the
domain.

Figure 8(c) depicts the same domain of Fig. 8(a) after moving and
deleting some of the boundary points. Note that the ellipse has been
disconnected from the rest of the shape by only moving one point to
overlay the other. The program accommodates this by eliminating the
point with the highest serial number. As a quality check of the generated
mesh, the connecting point of the two shapes is shown in Fig. 8(d) (node

Hassan S. Naji

58

Fig. 8(b). Triangulated domain of Fig. 8(a).

Fig. 8(c). Triangulated domain after editing.

A C# Algorithm for Creating Triangular Meshes…

59

number 325). Next the points on the upper-left corner of the domain
were moved downward. One more place on the left side of the domain
where some points were deleted and the rest were moved a little bit to
the right.

Fig. 8(d). Node numbers of the triangulated domain after editing.

El-Hamalawi Example

The following example was selected from El-Hamalawi work [5].
As he stated that the geometry could be a machine part with narrow
edges and two holes of different shapes. Figure 9(a) shows the geometry
with boundary nodes shown as small donuts. Initially a uniform mesh
was produced as shown in Fig. 9(b), which consisted of 563 nodes and
966 elements.

Hassan S. Naji

60

Fig. 9(b). The generated mesh of El-Hamalawi geometry.

Fig. 9(a). The geometry of El-Hamalawi example.

Next a higher node density has been specified on the narrow edges
of the domain. These are usually problematic when abrupt changes in
element sizes occur. Figure 9(c) displays boundary node numbers which
may not be visibly well in the denser area. Figure 9(d) shows the domain
after triangulation, which consisted of 1445 nodes and 2585 elements.

A C# Algorithm for Creating Triangular Meshes…

61

Fig. 9(c). El-Hamalawi geometry with higher node density at the narrow edges.

Fig. 9(d). El-Hamalawi geometry after triangulation.

Hassan S. Naji

62

Fig. 9(e). El-Hamalawi example with lesser node density at the right side of the domain.

Finally, for El-Hamalawi example, we required lesser node density
at the right side of the domain as shown in Fig. 9(e). A total of 307
nodes were used to describe the front. The generated mesh consisted of
1198 nodes and 2104 elements. The bandwidth of the mesh coefficient
matrix before node renumbering is 2181 and after renumbering is only
87 as shown in Fig. 9(f).

Fig. 9(f). The coefficient matrix of El-Hamalawi example as shown in Fig. 9(e).

A C# Algorithm for Creating Triangular Meshes…

63

Fig. 10(a). Owen’s model as presented in Ref.

Fig. 10(b). Owen’s model after triangulation.

Owen's Model

Figure 10(a) is an example of applying this algorithm to Owen's
model as described in Ref. [8]; which consists of an external rectangle
with a square and circle inside. The Fig. shows boundary nodes as small
donuts on the boundary. Figure 10(b) displays the model after
triangulation is completed with higher node density around the circle
perimeter.

Hassan S. Naji

64

Fig. 11(b). Triangulated elliptical domain.

Fig. 11(a). An elliptical domain with an off circle inside.

Bastian Modified Example

The following modified example was selected from Bastian [1]. It
considers a case where a small hole has been added off center from a
large ellipse. Higher node density has been specified on the right side of
the domain as shown in Fig. 11a. The final mesh after smoothing is
shown in Fig. 11b.

A C# Algorithm for Creating Triangular Meshes…

65

Fig. 12(a). Hand domain to be triangulated.

Fig. 12(b). Triangulated hand domain.

Highly-Irregular (Hand) Example

Figure 12(a) shows a hand example which represents a highly-
curved region. Cubic-spline sets of curves were used to trace the hand.
The hand is scanned in a clockwise direction. A cubic spline
interpolation routine was used to explode the curve into a set of
boundary nodes. Figure 12(b) depicts the triangulated domain. Note how
the triangles are denser at the finger tips and pits.

Hassan S. Naji

66

Conclusions

A method for creating efficient finite element grids was illustrated.
The method is simple, fast, and requires minimal input. The method is
an improved version of the advancing front technique as described in
Ref. [14]. Examples were presented to illustrate the simplicity and
efficiency of the method.

From an efficiency point of view, the mesh generation process is
divided into two parts: path representation and domain triangulation.
The path representation step may be thoroughly managed using object-
oriented programming languages. The C# language offers this
capability. The algorithm presented in this paper is developed using the
C# object-oriented language. It facilitates the creation of initial fronts for
the advancing front triangulation schemes. It almost eliminates user
interference. Furthermore, it allows for any combination of basic shapes
in any order.

The ability to start with a primitive shape (rectangle, polygon,
circle, or ellipse) and switch to a path (a set of lines and/or curves)
makes it flexible to trace highly-irregular and complex shapes. The path
object outputs the domain boundary as a set of points (nodes) arranged
successively in a clockwise or anticlockwise direction. This output
becomes an input to the mesh generation object. The way a region path
is traced has a very strong influence on the quality of the generated
mesh.

References

 [1] Bastian, M. and Li, B. Q., An efficient automatic mesh generator for quadrilateral elements

implemented using C++, Finite Elements in Analysis and Design, 39: 905-930 (2003).

[2] Bykat, A., “Automatic Generation of Triangular Grid: I-Subdivision of a General Polygon

into Convex Subregions. II-Triangulation of Convex Polygons,” Int. J. Numer. Methods

Eng., 10: 1329-1342 (1976).

[3] Cavendish, J. C., “Automatic Triangulation of Arbitrary Planar Domains for the Finite

Element Method,” Int. J. Numer. Methods Eng., 8: 679-696 (1974).

[4] Cuthill, E. and McKee, J., “Reducing the Bandwidth of Sparse Symmetric Matrices, ”

Proc. 24rh Nat. Conf. Assoc. Comput. Mach., pp: 157-172 (1969).

[5] El-Hamalawi, A., "A 2D combined advancing front-Delaunay mesh generation scheme,"

Finite Elements in Analysis and Design, 40: 967-989 (2004).

[6] George, P. L., "Automatic Mesh Generation: Application to Finite Element Methods,” John

Wiley & Sons, pp: 137-147 (1991).

A C# Algorithm for Creating Triangular Meshes…

67

[7] Hales, H. B., "A Method for Creating 2-D Orthogonal Grids Which Conform to Irregular

Shapes,” SPE, 35273 (1996).

[8] Lee, Kyu-Yeul, Kim, In-I1, Cho, Doo-Yeoun and Kim, Tae-Wan, "An algorithm for

automatic 2D quadrilateral mesh generation with line constraints," Computer-Aided Design,

35: 1055-1068 (2003).

[9] Lämmer, L. and Burghardt, M., "Parallel generation of triangular and quadrilateral

meshes," Advances in Engineering Software, 31: 929-936 (2000).

[10] Lee, C. K. and Hobbs, R. E., "Automatic adaptive finite element mesh generation over

rational B-spline surfaces," Computers and Structures, 69: 577-608 (1998).

[11] Lee, C. K. and Hobbs, R. E., "Automatic adaptive finite element mesh generation over

arbitrary two-dimensional domains using advancing front technique," Computers and

Structures, 71: 9-34 (1999).

[12] Lo, S. H., “A New Mesh Generation Scheme For Arbitrary Planar Domains”, Int. J. Numer.

Methods Eng., 21: 1403-1426 (1985).

[13] Lo, S.H. and Wang, W. X., "Generation of finite element mesh with variable size over an

unbounded 2D domains," Comput. Methods Appl. Mech. Engrg., 194: 4668-4684 (2005).

[14] Naji, H., "An Improved advancing front algorithm for triangulating arbitrary two-

dimensional regions," The 17th National Computer Conference, April 2004, pp: 505-518,

King Abdulaziz University, Jeddah, Saudi Arabia.

[15] O'Bara, R. M., "Adaptive mesh generation for curved domains," Applied Numerical

Mathematics, 52: 251-271(2005).

[16] Sadek, E. A., “A Scheme for the Automatic Generation of Triangular Finite Elements”, Int.

J. Numer. Methods Eng., 15:1813-1822 (1980).

[17] Secchi, S. and Simon, L., "An improved procedure for 2D unstructured Delaunay mesh

generation," Advances in Engineering Software, 34: 217-234 (2003).

Hassan S. Naji

68

Appendix (A)

A listing of the Line class

public class Line

{

// User-input fields

 public PointF b; // begin point of line

 public PointF e; // end point of line

 public float s; // requested point spacing on line

 public float r; // ratio of last/first point spacing

on line

 // Class-required fields

 public byte nClickLMB; // click number of left mouse

button

 public PointF pt; // tracking point

 public bool isFinished; // drawing status

 public Line()

 {

 Clear();

 }

 public void Clear()

 {

 this.b = PointF.Empty;

 this.e = PointF.Empty;

 this.s = 0;

 this.r = 0;

 this.nClickLMB = 0;

 this.pt = PointF.Empty;

 this.isFinished = false;

 }

 public void MouseDown(object sender,

System.Windows.Forms.MouseEventArgs mea)

 {

 if(mea.Button ==

System.Windows.Forms.MouseButtons.Left)

 {

 this.nClickLMB++;

 if(this.nClickLMB == 1)

 {

 this.b = new PointF(mea.X, mea.Y);

 this.isFinished = false;

 }

 else if(this.nClickLMB == 2)

 {

 this.e = new PointF(mea.X, mea.Y);

 this.isFinished = true;

 }

 }

 }

 public void MouseMove(object sender,

System.Windows.Forms.MouseEventArgs mea)

A C# Algorithm for Creating Triangular Meshes…

69

 {

 if(this.nClickLMB == 1)

 {

 System.Windows.Forms.Panel panel =

 (System.Windows.Forms.Panel) sender;

 Graphics grfx = panel.CreateGraphics();

 Draw(grfx, panel.BackColor, this.pt);

 this.pt = new PointF(mea.X, mea.Y);

 Draw(grfx, panel.ForeColor, this.pt);

 grfx.Dispose();

 }

 }

 public void Draw(Graphics grfx, Color clr, PointF pt)

 {

 this.e = pt;

 Pen pen = new Pen(clr);

 grfx.DrawLine(pen, this.b, this.e);

 pen.Dispose();

 }

 public void Draw(Graphics grfx, Pen pen)

 {

 grfx.DrawLine(pen, this.b, this.e);

 }

 public PointF[] Explode()

 {

 return Explode(this.b, this.e, this.s, this.r);

 }

 public PointF[] Explode(float s, float r)

 {

 return Explode(this.b, this.e, s, r);

 }

 public static PointF[] Explode(PointF b, PointF e, float

es, float r)

 {

 // This function explodes a line into a set of

points

 decimal l = (decimal)

TriGrid.PathComponent.Point.Distance(b, e);

 decimal s = (decimal) es;

 int n = (int) (l/s);

 PointF[] points = new PointF[n+1];

 points[0] = b;

 points[n] = e;

 if(n <= 1) return points;

 decimal Sum = 0.0m;

 for(int c = 0; c < n; c++)

 Sum += (1 + c*((decimal) r- 1.0m)/(n-1));

 decimal ss = l/Sum;

 decimal[] sl = new decimal[n];

 for(int c = 0; c < n; c++)

Hassan S. Naji

70

 sl[c] = ss + c*((decimal) r - 1.0m)*ss/(n-

1);

 PointF p = new PointF(e.X-b.X, e.Y-b.Y);

 float a = TriGrid.PathComponent.Point.XAngle(p);

 for(int c = 1; c < n; c++)

 {

 points[c].X = points[c-1].X + ((float)

(sl[c-1]*((decimal)

System.Math.Cos(a))));

 points[c].Y = points[c-1].Y + ((float)

(sl[c-1]*((decimal)

System.Math.Sin(a))));

 }

 return points;

 }

 public void Write(StreamWriter sw)

 {

 sw.WriteLine(this.b.X.ToString());

 sw.WriteLine(this.b.Y.ToString());

 sw.WriteLine(this.e.X.ToString());

 sw.WriteLine(this.e.Y.ToString());

 sw.WriteLine(this.s.ToString());

 sw.WriteLine(this.r.ToString());

 }

 public void Read(StreamReader sr)

 {

 this.b = new PointF(float.Parse(sr.ReadLine()),

 float.Parse(sr.ReadLine()));

 this.e = new PointF(float.Parse(sr.ReadLine()),

 float.Parse(sr.ReadLine()));

 this.s = float.Parse(sr.ReadLine());

 this.r = float.Parse(sr.ReadLine());

 }

}

A C# Algorithm for Creating Triangular Meshes…

71

 ���� ����	�C#
�����
 ������ 	�� �������
 ������

����
 �������
 ���
��
 ���	� �
������ ������ ���

���� �����	 �	

����� ��� 	
��� ���
� ����� ��
� ��
� ��
������� �������
������� ����

����� ������� ��
���� �������

hassan@petrobjects.com & petrobjects.com

�
������. ���� ����	�
����
���� ��� ��� C# 	��� ������ �� �������
 	�� !"#�$��� %� &' �(��#)��" !�*�*� +�� #$��� ��,��* ��-����� ���	�� ���)

 #.#���� 	��$��(Finite Element Method) . #��$� &���. 0���	��� 1�� +�2
 %)#��3 ���' �������� #.#� 4���� 05������ ����� &' ��#����� �(6�.�� ���	�

#��. . 0���������� �.��)�� %*� �����7� %�3�7� ��#)��� ��� 0���	��� 1�� &'
. 0!��������. 0!8������� 98:7� !�##$��. .
���; ��<���� 9.����. 0	,�.#��

 �:� =3��
�� 0������� &6	�)�� #��� &' ��(�. ���2�>� ���	�� %�3�7� 1�� �'
 �?3�� ���� �2.�6� +�� @	���� ������ ��� �� %3� ��:� ���3. 0&����� 4��	�

 ������� #.#� +�� ��:� . A���� =� &���� ". @	���� =.3� =� #�" ������ 1��
 &�' 	��.B� �('�� .� �(3�	�� =3�� ������ 1�� =� +�� �'�:;�� 0C$��� �(:$�

� =D3�� ���. ��.(��� ��� 1	.#� +��� �'��:;�� #��$��� ���� &' %�3��
���� =�
4.����� �6.�� +�2 &,�(��� %3��� E�)�.

 ' #6.� #< &���. ���)�#�� !���>�� =� 5������ & �(�'��:� =3�� #$��� ��,��*
 %3��� &6	�)�� #��� +��. =� =���6�� �)B� ������� �.�) 5�	� =2 .. �����

 �� =2
�	�6� #.6. +�� �'�:;�� 0=3�� ���3 98:7� ��.���� !�*�*� ���	��� 1
 	� +�� ���)�#�� ������ F�	��� ��� &������ ##$�� G3@ 98:7� .
��.� ��<	��� =

	�*B� �3���� ����H�	���� H�!8��$��� �'.>�� �6� +�2 (Coefficient Matrix)

 ��'�	���(Finite Element Mesh)�3 ���3' 0 ���3 %<� �'.>���� ��	� C	2 =
 4����� @	3�� =� %��� ��.����� �$��� !�< . ����	� !�#)���� #��.Cuthill-

Mckee !8��$��� �'.>�� ��<	� @#�2� &' . ���� ��#)��� =�C# ���:� #�<

Hassan S. Naji

72

 	��3 ��.	�@ %�3�7� #�2�
���� &' 	�3� ����$' ��:�. ���	��� 1�� �6�	� &' .
 #<. &����. ��<8$�� !�� ������$�� !86��� =� ��*�7� =� #�#$��� ���$��"� !��

���	��� 1�� @.<. ����� I:.�.

