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Design of Rectangular Beams under Torsion, Bending and Shear

ALI A. AKHTARUZZAMAN
Civil Engineering Department, Faculty of Engineering,
King Abdulaziz University, Jeddah, Saudi Arabia.

ABSTRACT. A setofinteractive strength equations based on the skew-bend-
ing model have been modified for designing rectangular beams subjected to
torsion, bending and shear. The design procedure is a trial and error ap-
proach, and is based on the estimation of the required pure flexural moment
capacity of the section to be designed. Torsion-bending-shear interaction
data of a reference section have been used in estimating the pure flexural
moment capacity. These data are presented in a tabular form and also as
non-dimensional interaction diagrams. Four numerical examples covering
different possible modes of failure are presented. The torsional moment
capacities of the designed sections are compared with those given by the
ACI code torsion equations.

Introduction

Reinforced concrete beams under uneven floor loading as in the case of an edge
beam in a building, are subjected to torsional moments. The fact that this affects the
structural performance of members was long recognized by designers as well as by
the ACI codel!). Lack of adequate research, however, hindered the formulation of
any suitable code provisions for the design of reinforced concrete members subjected
to torsion. Subsequently, the ACI codel® included design provisions, on the basis of
Hsu’sl? work, for members subjected to torsion and torsion with shear. These, how-
ever, neglect the influence of bending moment on the torsional strength of beams, al-
though the interdependence of torsional moment and bending moment capacities of
reinforced concrete members was long indicated by different researchers!*¢l. This in-
terdependence becomes more pronounced at low ranges of 7/M ratios.

Since the late sixties, researchers have been investigating the torsion-bending in-
teraction(”!1] as well as the torsion-bending-shear interaction{!>14l. Their works are
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based either on the skew-bending model developed by Lessigl®] or on the space struss
analogy propounded by Rausch!!>l. Most of these works, however, concentrate on
the analytical rather than the design aspect of the torsion problem.

Recently, Hasnat and Akhtaruzzaman!'f] presented theoretical equations based
on the skew-bending model for the entire range of torsion-bending-shear interaction
for rectangular beams of solid cross-section as well as for beams containing a small
opening. The equations are suitable for analyzing a given section and can be used to
obtain its theoretical torsional moment capacity 7,, under any combination of tor-
sion, bending and shear. In their present format, however, the equations are not suit-
able for application to design problems. In this paper, the basic strength equations
are presented in a different form rendering them applicable to the design of rectan-
gular beams under any loading combination.

Basic Equations

The skew-bending model categorizes torsional failure of a reinforced concrete
beam under three different modes: Mode 1, Mode 2 and Mode 3 depending on the
location of a skewed compression zone near the top, side or bottom of the section, re-
spectively. The failure pattern depends on the aspect ratio of the beam, the ratio be-
tween top and bottom longitudinal reinforcements, and the ratio between applied
torsional moment and bending moment in combination with different values of shear
force.

According to Hasnat and Akhtaruzzamanl'$}, T, T, and T;, the torsional moment
capacities in Modes 1, 2 and 3, respectively, of a rectangular beam of solid section are

given by
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The smallest of the three torsional moment capacities, T;, T, and T;, is taken as
the theoretical torsional moment capacity T,, of the section.

In the above expressions A,, is the area of one leg of vertical stirrups, f,, is the yield
strength of stirrup steel, M, , M, and M, represent the bending moment capacities
of the section in positive, lateral and negative bending, respectively, s is the stirrup
spacing, x, and y, are the center-to-center dimensions of a long stirrup, a is the aspect
ratio of the beam section, 8 is a factor incorporating torsional moment and shear
force acting at the section, A and A’ are factors incorporating torsional moment,
bending moment and shear force acting at the section and its cross sectional dimen-
sions, and i is the ratio between torsional moment and bending moment acting at the
section.

Transformation of the Basic Equations

Equations 1, 2 and 3 indicate that the values of T, T, and T, can be readily ob-
tained once the various sectional and loading parameters are known.

In a design problem, however, where the sectional parameters are to be estab-
lished, the equations cannot be readily used. Therefore, Eqs. 1, 2 and 3 are to be ex-
pressed in different forms to render them suitable for design applications. The re-
quired transformations of the basic equations are presented below.

Transformation of Eq. 1

By transposing and squaring both sides, Eq. 1 is written as

2
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—_—t — | ==+ 9
[ 2My K,  ¢A K, (yA) ©)
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Tl
where k, = T (13)
01

Substituting for T, from Eq. 1,

_ 2K T 11
“ 7 [ K +(¢A)2‘¢A] (9

i

Equation 12 is the transformed form of Eq. 1.

Transformation of Eq. 2

By transposing and squaring both sides, Eq. 2 is written as

T§(1+8)2—RK (15)
M, 2 %2
K CTi(1+ &) 6
o > 7T 4M R, (16)
K(1+ 8)
T TR, (17)
h K, = 2 1
where , = A_/I; (18)
Substituting for T, from Eq. 2,
k, = —* VR, K (19)

Replacing T, by T, ( =T, /¢ ) for Mode 2 failure, where T, and ¢ are the factored tor-
sional moment and the undercapacity factor, respectively, Eq. 18 becomes

.M
MO] = k2

(20)

T (=T
where v = —"(—M—z—) (21)

n

Equation 17 is the transformed form of Eq. 2.
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Transformation of Eq. 3

By transposing and squaring both sides, Eq. 3 is written as

&

(22)

2
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Expanding the terms within the parentheses and cancelling 1/( ¢A’ )2 from both
sides,
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Substituting for T, from Eq. 3,
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Equation 25 is the transformed form of Eq. 3 and is similar to that of Eq 1.

Equations 12, 17 and 25 are used for simultaneous application of torsion, bending
and shear, can be readily used for torsion and bending only by putting4 =1,8 =0
and A’ = —1. These substitutions reduce Eqgs. 12, 17 and 25 to

_k g (28)
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K=—k§— (29)
27 4R,
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_ 30
K, RS (30)

Design Procedures

The design for torsion basically means determining the size and spacing of stirrups
required to develop a desired torsional moment capacity T, ( = T, /¢ ) in a section
when it is subjected to a factored bending moment M, and a factored shear force V.
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The section can be designed first for flexure to have a pure bending moment capacity
M, and then the required stirrup size and spacing can be determined to give
adequate shear and torsional strengths. The pure bending moment capacity M,
however, is not known initially and as shown in Fig. 1(a), depending on y and A, the
ratio between bending moment and shear force acting on the section, the factored
moment M, ( = ¢M,, ) is only a variable fraction of M,. The pure flexural moment
capacity My, , nevertheless, can be obtained by using Eq. 13, 18 or 26 written as

T,
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FiG. 1. Typical torsion-bending interaction diagrams and torsion-bending-shear interaction surface.

If k,, k, and k, are known, the pure flexural moment capacity M, can be obtained
by using the least of these with T, T, or T, replaced by T, in the corresponding equ-
ation. However, the values of k, k, and k, themselves depend, among other things,
on the section parameters, and so cannot be known initially. This problem can be
overcome by a trial and error approach using a reference section of known dimen-
sions and preferably having other variables identical to the section to be designed.
The k,, k, and k, values of the reference section can be used to obtain an estimated
pure flexural moment capacity M.

A set of values of k, and k, of a typical 250 X 500mm reference section are pre-
sented in Table 1. The section has 10mm diameter stirrups at 100mm spacing with
two 12mm diameter hangers, and concrete strength f’ of 27.6 MPa, f_ and f, the
yield strengths of stirrup and longitudinal steel, of 276 MPa.
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Table 1 contains values of k, and k, for three different steel ratios, and a range of
T/M ratio ( ¢ ) and M/V ratio ( A ). For other values of these parameters, k, and k,
can be interpolated. The table does not contain any values of k,. The possibility of
Mode 3 failure is checked separately as will be shown later. Although Table 1 is for
particular values of material strengths and sectional properties, it can be used in any
initial trial calculation, for other values of these also. The subsequent calculations
are self-adjusting in nature.

TaBLE 1. Values of k, and k; of a 250 x 500mm reference section.

P = P = 0070 p =050 5, = 0.018 p =025 5, = 0.00925
Ratio :
TIM Jatd= |ata= |ath= |atd= [atA= |ath= |atd= |atd= |atdh= |std= [agh=|atd= |atd= |atd= |atd= Jatd= [atd= |atd= |gth= [atd= |ald=
0.05m |0.10m |0.20m |060m [1.00m [1.50m| = |0.05m |0.10m |[0.20m |060m|!.0m|I50m| = |0.05m|0.10m |0.20m |0.60m [A.00m||.30m| =
= 1
0.02 |0.0012 | 0.0024 | 0.0047 | 0.0132 §0.0166 |0.0179 | 0.0198 | 0.0016 | 0.0031 | 0.0062 | 0.0159 | 0.0178 § 0.0187 §0.0199 | 0.0022 | 0.0044 | 0.0087 J0.0074 | 0.0187 § 0.0193 § 0.0199
0.04 |0.002¢ | 0.0047 | 0.0091 | 0.0243 [0.0313 Jo.0338 J0.0384 | 0.0031 | 0.0062 | 0.0119 | 0.0304 | 0.0341 | 0.0360 J0.0391 | 0.0044 | 0.0087 | 0.0169 {0.0337 | 0.0364 | 0.0377 | 0.0995
0.06 |0.0035 | 0.0069 | 0.0132 | 00338 | 0.0441 |0.0476 | 0.0551 | 00047 0.0091 | 0.0174 | 0.0435 | 0.0489 | 0.0517 {0.0570 | 0.0066 | 0.0129 | 0.0247 | 0.0489 | 0.0530 | 0.0550 § 0.0583
0.08 0.0049 |0.0091 | 0.0171 | 0.0419 |0.0553 |0.0597 | 0.069%6 | 0.0062 | 0.0119 | 0.0225 gﬁﬁ 0.0622 | 0.0659 0.0734 § 0.0087 | 0.0169 | 0.0320 | 0.0630 | 0.0685 | 0.0m13 | 0.0762
0.10 0,058 | 0.0122 | 0.0208 | 0.0490 |0.0650 {0.0701 |0.0819 | 0.0076 | 0.0147 | 0.0274 | 0.0544 0.0108 | 0.0209 | 0.0389 | 0.0761 | 0.0828 | 0.0863 | 0.0929
012 (00069 | 00132 | 00243 00552 Ko 0792 | 00924 | 0.0091 | 00174 00520 | 0.0726 00129 | 0.0247 | 0.0054 | 0,082 f 0.0961 | 01003 § 0. 1085
0.4 |0.0080 | 00152 | 0.0276 | 0.0607 | 0.0798 Jo.0671 | 0.1013 | 0.0105 | 0.0200 | 0.0363 | 0.0798 0.0149 | 0.0284 | 0.0516 {0.0995 | 0.1084 | 0.1130 | 0.1228
0.16 |0.0091 | 0.0171 |0.0308 | 0.0658 | 0.0847 J0.0541 J0.1088 J0.0119 [ 0.0225 | 0,045 | 0.0863 0.0169 | 0.0320 [ 0.0575 | 0.1099 [ 0.1197 | 0.0249 J0.1358
0.18 |0.0101 |0.0190 | 0.0338 | 0.0700 | 0.0891 |0.1003 | 0.1154 | 0.0133 | 0.0050 | 0.0844 | 0.0921 0.0189 | 0.0355 | 0.0630 | 0.1197 { 0.1301 { 0.1358 0,147
020 |0.0112 | 0.0208 | 0.0366 | 0.0739 | 0.0929 :m 0.1210 |0.0047 | 0.0274 | 0.0681 | 0.0873 0.0209 0,038 | 0.0683 [0.1287 | 0.1398 | 0.1458 | 0.1588
022 |0.0122 | 0.0226 | 0.0392 | 0.0775 | 0.0963 | 0.109¢ | 0.1259 |0.0161 {00297 | 0.0517 | 0120 00228 f0.0422 | 0.0734 | .1371 {01487 f 0.1550 f 0. 1688
024 |00132 |0.0243 | 0.0419 | 0.0808 | 0.0993 | 0.1121 |0.1302 | 0,017 | 0.0320 | 0.0551 | 0.1083 0.0247 | 0.0454 [ 0.0782 | 01449 [ 0.1569 | 0.1636 f 0.17m0
026 |0.0142 |0.0260 | 0.0843 | 0.0838 | 0.1019 | 01143 | 0.1340 | 00187 | 0.0342 [ 0.0583 | 0.1103 0.0266 | 0.0485 | 0.0028 [ 0.1522 o.:an.ma 0.1864
028 |0.0152 |0.0276 | 0.0467 | 0.0866 | 0.1044 | 0.1163 | 0.1374 | 0.0000 | 0.0363 | 0.0814 | 0.1139 0.084 | 00516 [ 0.0872 | 0.1590 0,177 | 0.1787 J 01980
030 |0.0162 |0.0292 | 00450 | 0.0891 | 0.1066 | 01181 | 0.1404 | 0.0213 | 0.0384 | 0.0844 | 0.1172 0.0302 | 0,054 [ 0.0914 | 0.1655 [ 0.1784 | 0.1854 J0.20m1
032 |0.0171 | 0.0308 | 0.0511 | 0.0914 | 0.1086 | 0.1198 | 0.1431 | 0.0225 | 0.0605 | 0.0673 | 0.1208 0020 | 0,057 | 0.0954 0.1846 | 0.1917 |0.2076
oM |00t 00323 [o.0s22 |0.09% |0.1104 | 0.1212 | 0.1456 | 0.0236 | 0.0025 | 0,089 | 0.1231 0.0337 | 0.0603 | 0.0993 | 0.1747 | 0.1903 | 0.1976  0.2135
0.3 |0.0190 | 00338 |0.0552 |0.0956 |0.1121 |0.1226 | 0.1478 | 0.0050 [ 0.0444 [0.0726 | 0.1258 0.0355 | 0.0630 | 0.1030 | 0.1786 [0.19.57| 0.2030 Jo.2191
038 |ooi |02 | 00571 |0.0975 | 0113 |0.1238 | 0.1498 | 0.0062 [ 0.0463 [ 0.0751 | 0.1283 0.0372 | 0.0657 | 0.1066 | 0.1821 | 0.2008 | 0.2081 J0.2202
0.00 [0.0208 | 0.0366 [ 0.05%9 | 0.0993 | 0.1150 ous% 0.0274 | 0.0881 | 0.0775 | 0.1306 0.0389 | 0.0683 [ 0.1100 | 0.1854 | 0.2056 | 0.2129 J0.2200
042 |omr7 | 0030 | 00607 |0.1009 |0.1163 | 01259 | 0.1509 | 0.008% | 0.0499 [ 0.0798 | 0.1327 0.005 | 0.0709 [ 0.1133 | 0,184 | 0.2101 J0.207¢ J0.2334
044 |o.m2s |0.0393 | 0.062¢ |0.1024 | 01176 | 0.1269 | 0.1509 | 0.0297 | 0.0517 | 0.0800 | 0.1348 00422 | 0.0734 [ 0.1165 [ 0.1913 {0.2043 | 0.2216 0 2375
046 |0.0234 |0.0406 | 0.06% | 0.1039 | 0.1187 | 01278 | 0.1509 [ 0.0309 | 0.0534 [ 0.0842 | 0.1369 0008 | 0,078 | 0.1195 [ 0.1940 0.2183 | 0.2255 J0.2013
048 Jo.me3 |0.0419 | 0.065% | 0.1053 | 0.1158 | 0.1287 | 0.1509 | 0.0320 | 0.0851 | 0.0863 | 0.1385 0.0454 | 0.0782
0.50 |0.0252 | 0.0431 | 0.0671 | 0.1065 | 0.1208 | 0,1294 | 0.1509 | 0.0331 | 0.0567 | 0.0883 | 01402 0.0410 | 00805
0,60 |0.0292 | 0.0489 | 0.0739 | 0.1121 |0.1249 | 0.1325 | 0.1509 | 0.0384 | 0.0644 | 0.0973 | 0.1474 0054 | 0.0914
070 |0.0330 | 0.0542 | 0.0798 | 0,163 |0.1281 | 01349 | 01509 | 0.0434 | 0.0713 [ 0.1049 | 01530 00617 | 0.1012 ;
080 (0036 | 0.0589 |0.0847 | 0.198 |0.1306 |0.1367 | 0.1509 |0.0481 | 00775 | 0.1115 | 0.15%6 0.0683 | 0.1100 | 0.1583 | 0.2257 | 0.2438 [ 02553 -J‘g'g:v
090 |0.03%9 | 0.0632 | 0.0891 | 0.1226 |0.1325 | 0.1382 | 0.1509 | 0.0526 | 0.0801 [0.1172 | 0.0613 0.0746 | 0.1180 | 0.1664 | 0.2289 | 0.2475 | 0.25% | 0.2819
100 Jo.0431 {0,067 |0.0929 [ 0.1269 |0.1:42 | 0,193 | 0.1509 | 0.0567 | 0.0883 [ 0.1222 | 0.1684 0.0805 | 0.1253 | 0.1735 [ 0.2333 | 0.2506 | 0.2602 | 0.2819
150 |0.0566 | 0.0823 | 0.1066 | 0.1325 |0.1393 | 0.1430 | 0.1509 | 0.0745 | 0.1083 | 0.1402 | 0.1744 0.1057 | 0.1538 [ 0.1990 [ 0.2475 | 0.2602 | 0.2671 | 0.2819
200 [0.0671 [0.0929 {01150 {01367 [ 0.1421 [0.1449 [ 0.1509 [ 0,083 | 0.1222 | 0.0513 {0.17%9 01253 | 0.4735 [ 0.2048 | 0.2553 | 0.2653 | 0.2706 | 0.2819
250 {0,075 {01006 | 0.1208 {01393 [0.1438 | 01461 [ 0.1509 | 0.0993 | 0.1324 | 0.1589 [ 0.1833 0,1409 | 0.1879 |0.2255 [ 0.2600 | 0.2685 | 0.2728 | 0.2819
3.00 |0.0823 | 0.1066 | 0.1269 | 0.1412 | 0.1449 | 0.1469 | 0.1509 | 0.1083 | 0.1402 | 0.1644 | 0.1857 0.1538 | 0.1990 | 0.2333 | 0.26% | 0.2706 | 0.2743 | 0.2819
400 [0.0729 [0.1150 | 0.1306 [0.1435 | 0,164 | 0.1479 [ 0.1509 [ 0.1222 | 0.1513 |0.1718 | 0.1888 0.1735 | 0.2148 | 0.2438 [ 0.267 [ 0.2734 | 0.2761 | 0.2819
500 [0.1006 [0.1208 {01342 | 01049 | 0.1473 | 0.1485 [ 0.1509 | 0.1324 | 0.1589 | 0.1765 | 0.1906 0.1679 | 0,255 | 0.2506 | 0.2706 | 0.2750 | 0.2773 [ 0.2819
600 [0.106 [0.1299 | 0.1367 {01459 [ 0.1479 | 0.1489 | 0.1509 [ 0,102 | 0.16%4 | 0.1799 [ 0.1919 01990 | 0.2333 | 02553 | 0.2724 [ 0.2761 | 0.2780 | 0.2819
800 {0.1150 | 0.1306 | 0.1400 | 001471 | 0,145 | 0.1494 | 0.1509 [ 0.1513 | 01718 | 0.1842 | 0.1935 02148 | 0.2438 | 0.2615 | 0.2747 | 0.2775 | 0.2790 | 0.2819
100 [0.1208 | 0.1342 {0.1420 | 0.1479 | 0.0491 {0,197 | 0.1509 | 0.1589 | 0.1765 | 0.1869 | 0.1945 02255 | 0.2906 | 0.2653 | 0.2761 [ 0.2784 | 0.279 | 0.2819
150 [0.129¢ |0.1392 | 0.1449 | 0.1489 | 0.1497 | 0.1501 | 0.1509 | 0.1702 | 0.1833 | 0.1506 | 0.1959 | 0.1969 | 01975 | 0.1986 | 0.2416 | 0,26 | 0.2706 | 0.2780 | 0.2796 | 0.2803 | 0.2819
200 [o.1342 |0.m21 {0,164 | 0.1494 | 0.1500 | 0.1503 | 0.1509 |0.1765 | 0.1869 | 0.1926 | 0.1965 | 0.1974 | 0.1978 | 0.1586 |0.2506 | 0.2653 | 0.2734 [ 0.2790 | 0.2801 | 0.2807 | 02819
250 [o.0372 {00438 | 0.1473 | 0,197 | 0.1502 [ 0.1504 | 0.1509 | 0.1805 | 0.1891 | 0.1957 | 0.1968 | 0.197% | 0.1970 | 0.1586 |0.2563 | 0.2685 | 0.2750 | 0.2796 | 0.2805 | 0.2810 | 0.2819
300 {01393 ] 01409 |0.1479 | 0.1099 |0.1503 [ 0.1505 | 0.1509 | 0.1833 | 01906 | 0.1945 | 0.0972 | 0.1978 | 01980 | 0,186 | 0.2602 | 0.2706 | 0.2761 | 0.2799 | 0.2807 | 0.2811 |0.2809
00 {01421 01464 | 01488 |0.1502 |0.1505 | 0.1506 | 0.1509 | 0.1869 | 0.1926 | 0.1955 | 0.1976 | 0.1980 | 0.1982 | 0.1986 |0.2653 | 0.2734 | 0.27% | 0.2804 | 0.2810 | 0.2813 | 0.2819
00 [01a8 0447|0161 [0.1503 | 01506 | 0.1507 | 0.1509 | 0.1891 |0.1937 {0,191 | 0.1978 | 0.1981 | 01983 | 0.1986 |0.2685 | 0.2750 | 0.2784 | 0.2807 | 0.2812 | 0.2814 | 0.2819
= [o1s {0159 [0.1508 01509 ulmla.m 0150901509 01985 01198 01986 0198 0198 0198 | .19 [0.2815'|0.2819 | 02815 [ 02819 02819 | 02819

The k, values are enclosed by thick lines.
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In Table 1, the k, values are boxed separately. At any ¢, only the controlling value
of k, or k,, i.e., the smaller of the two, is listed. The s at which both values are listed
is a transitional ¢ between Mode 1 and Mode 2 failures, or is very close to it.

The values of &, and k, can also be presented as a set of non-dimensional torsion-
bending interaction diagrams. A typical set of such diagrams for the 250 X 500mm re-
ference section with p = 0.50 p_ . are shown in Fig. 2. The ordinate of any of the in-
teraction diagrams corresponding to a given combination of ¢ and A, gives the value
of k, or k, depending on the controlling mode of failure indicated in the figure.

0.20 T Ty 7 7 TS ”
LA MR
A=20m N
/J\=$’° Ky —-- T
N K i.‘im
550m_\ N 72—
05 ~ AN “.25m*

2§/
/
3
// 7
A

0.10

Ratio k, , kg

AW AN

0.05

-
B

Lddt—

FIG. 2. Interaction diagrams for the 250 x 500mm reference section.

Once M_ is estimated, as described above, the section is then designed for flexure.
Next, depending on whether k, or k, was used to find M, , the appropriate equations
are used to carry out the torsion design of the section.

In the next section, four design examples are present :d; Examples 1 and 2 show
designs of Mode 1 and Mode 2 controlled cases, respectit ely, while Example 3 shows
a case with its design s very close to a transitional s of the reference section. Example
4 illustrates how the torsional moment capacity in Mode 3 is enhanced, if required, as

discussed below.

After a section is designed as described, its torsional capacities in Modes 1,2 and 3
are checked. Since only k, or k, was used in obtaining M , the checking may indicate
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a premature failure in Mode 3, especially if the design ¢ is high or the section has a
low top steel ratio, p’. In that case, the design is modified by increasing the top steel
area A'. Equation 23 can be expressed in a different form to obtain the value of R, re-
quired to ensure adequate strength in Mode 3. Replacing T, by T, for Mode 3 failure
and cancelling 1/K, from both sides, Eq. 23 can be written as
T24° T

R =05 K My 0 (34)

01 [t}

Equation 34 gives the required v lue of R,. Next, the corresponding A, and hence
the top steel area A ¢ required to give an adequate torsional capacity in Mode 3 can
be obtained to finalize the design as will be illustrated in Example 4 as mentioned
earlier.

After a section has been designed for flexure and torsion as outlined above, its
shear capacity is checked. This is of particular importance in cases where Ay, (= M, /V,,
where V|, is the pure shear capacity A) is greater than or close to the design A. This is
because, as indicated in Fig. 1(b), at this range of A, the shear capacity of a section is
overestimated by Eq. 2.

Collins et al.[8] suggested that the reduced nominal shear capacity V, of a section
subjected to torsion, bending and shear, can be obtained from

— T
Vy =V, + 1.6 ;" (35)
in which the pure shear capacity V|, is given by
Vo=V, + V, (36)
= 0.17 Vf7 bd + 2 Sw @ 37)

N

where b and d represent the width and effective depth of the section, respectively.

KV, = V,/®, then the shear capacity of the section is deemed to be adequate.
However, if V, <V /¢, then the shear capacity of the section is to be increased as il-
lustrated in Examples 1 and 2. '

The design procedures discussed above are listed below.

A. Design for flexure

1. k, or k, is obtained from Table 1 for the design values of ¢and A, and an as-
sumed value of p.

2. Estimated pure flexural moment M;,, is obtained at T,/¢(k, or k,) and a sec-
tion is designed for flexure using Mg,. Then steps (3) through (5) are followed if
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Mode 1 controls (for k, < k,). Otherwise, steps (6) through (8) are followed.
B. Design for torsion (Mode 1 controls)

3. Valuesof My, a, n, Aand k,( = T,/ M) of the section designed in step (2)
are obtained, where u is a factor inyolving section dimensions.

4. Equations 12 and 8 are used to find K, and r in terms of stirrup spacing s for an
assumed size of stirrup.

5. The values of K| and r are substituted in Eq. 4 to obtain stirrup spacing s. The
calculations may be repeated for a different stirrup size until a suitable spacing is ob-
tained. A practical spacing is selected and step (9) is carried out.

C. Design for torsion (Mode 2 controls)
6. Values of M,, R, and 8 of the section designed in step (2) are obtained.

7. Equations 16 and 8 are used to find K, and r in terms of s for an assumed size
of stirrup.

8. The values of K, and rare substituted in Eq. 5 to find stirrup spacing s. The cal-
culations are repeated until a suitable spacing is obtained. A practical spacing is
selected and step (9) is carried out.

D. Checking shear capacity

9. Equations 37 and 35 are used to get V; and V,, respectively. If V, = V /¢,
step (11) is performed. Otherwise, step (10) is carried out.

10. V, is replaced by V, /¢ in Eq. 35 to obtain the required enhanced V,; which is
then substituted in Eq. 37 to obtain the stirrup spacing needed to satisfy the shear re-
quirement. A practical spacing is selected and step (11) is performed.

E. Checking torsion capacity
11. The torsional moment capacities in Modes 1, 2 and 3, of the section are
checked by using Eqs. 1,2 and 3toensure T, = T, T, and T;,.

12. If T, < T,, Eq. 34 is used to ensure adequate torsional moment capacity in
Mode 3 by providing the required top steel area.

Design Examples

Four design examples covering Modes 1, 2 and 3 as well as shear governed failure
cases are presented. Some of these have a and p different from those of the 250 x
500mm reference section illustrating the usefulness of Table 1 for such cases. Exam-
ples 1, 2 and 3 have been designed with p = 0.5p__ (=0.0185) and Example 4 with p
= 0.0120. The nominal values of torsional moment, bending moment and shear force
used in the examples, are presented in Table 2. In all the examples, f ; istaken as 27.6
MPa with f, and f, as 276 MPa. Results of calculations are presented in Tables 4, 5
and 6. Figure 3 shows the sections selected at various stages of design.
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TABLE 2. Data used in the design examples.

V= A= M('n =
T M v Assumed '
9 - v From Table 1 | _.col (2)
E‘;mple 085 | 090 | 085 | oo () [ col (3 :;‘:f; col. (8) or (9)
o col. (3) | col. (4) ky k,
(kN-m) | (kN-m) | (kN) (m) {kN-m)
(1 ) 3) (4) ©) (6) () (8) © (10)
1 100 | 250 | 4200 | 004 0.60 | 0.0185* | 0.0304 - 328.95
2 750 | 1500 | 2500 | o0s0-1] 060 | 0.018* - 0.1402 534.95
3 150 | 3600 | 2400 | 0.32 150 | 0.0185* | 0.1573 | 0.1576 731.09
4 1200 | 300 | 1500 | 4.00 020 | 0.0120 - 0.2224 539.57
*p=05p.,,
i 2412 ‘ ‘ 2-g12 I 1 2-¢12 1
[ 2-¢12 T o o 8 [=3 =
3 3 S o R © g ©
b3 Ly ~
gl | |22 il L et | L il
3o+l k350 - 200 l— s00—]

Example 1 Example 2 Example 3 Example 4

(a) Trial sections selected for estimated pure moment M"n {all
with assumed 12mm diameter stirrups)

258+ .t*308 ) [—-308
2084 19120
gn@ 1
T H10 cre ) Ocle 2@
©

2 § e 3 100 djec
0 l4-¢ 12 @

1 an p o e9q(120c/c s o9 p ¢

Example 1 Example 2 Example 3 .Example 4

(b) Trial sections with stirrup spacings obtained tor Mode 1 or
Mode 2 failure consideration

2-f22
-9 4@ H-d12@
- n@ 6 12@ 110 cfc 100 cjc

100 90 clc
cfc
825 8-f28 7-25
4128 b oo d b o o 4 b
3 A S A_A A A
Example 1 Example 2 Example 3 Example 4

(c) Final design (all with 40mm clear cover and 12mm diameter
hangers unless indicated otherwise)

"Note : All dimensions are
in millimeters,

F1G. 3. Details of beam sections designed.
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Example 1

Design a rectangular beam section if 7, = 8.5 kN-m, M, = 225.0kN-m and V, =
357.0kN.

Design for flexure

The design values of i and A along with that of k, obtained from Table 1, are pre-
sented in Table 2. It also contains the estimated required pure flexural moment M,
(= 328.95 kN-m). Preliminary calculations indicate that a 300 X 600mm section with
four 28mm diameter bars will be satisfactory. The pure flexural moment capacity M,
of the section is computed, with assumed 10mm diameter stirrups and 40mm clear
cover, as 331.16 kN-m.

The o, ., A and A’ values of the trial section are identical to those listed in Table 4.
Design for torsion

Since Mode 1 behavior is indicated, replacing T, by T,/¢ in Eq. 13, k; = 0.03020.
Substituting the values of k,, ¢rand Ain Eq. 12, K| = 0.02128. Also, substituting the
value of a (= 2.0) in Eq. 4, K, = 0.280r. Equating the two values of K, r = 0.0760.

Next, from Eq. 8, for 10mm diameter stirrups, » = 6.306/s. Thus, s = 82.9mm.
Therefore, 10mm diameter stirrups may be used at 80mm spacing. However, this
spacing may be deemed to be too small and a larger size, i.e., 12mm diameter stirrup
can be used as shown herein.

The trial section with 12mm diameter stirrups is shown in Fig. 3(a), and its details
are listed in Table 3. The flexural moment capacities of the section in positive, lateral

TABLE 3. Details of the trial sections shown in Fig. 3(a)

Example b h A, d d, d, x, y,
No.
{(mm) (mm) (mm?) (mm) (mm) (mm) {(mm) (mm)
(€3] ¢)] 3) @ 5 (6) (7 8 9)
1 300 600 2460 534 254 542 208 508
2 350 700 3930 610 304 642 258 608
3 400 750 4930 656 354 692 308 658
4 400 750 3440 671 354 692 308 658
TABLE 4. Flexural moment capacities and other parameters of the sections shown in Fig. 3(a).
IExample Myl Mol ) men b | e . el ALy
No. My, | My, | M, RZ'MD, R’_Mm a=, =0 S—MA A—1+‘“ A--1+m r——’s %,
(kN-m) | (kN-m) | kN-m) (om)
M 1o |6 |6 ) {6) ) @) ©) (10) (1) (12)
1 13980 ] 8928 | 3353 | 027070 | 0.10166 | 2.000 90.0 6.3025 478 2782 8.9931s
1 | 58976 | 164.26 | 39.82 | 027852 | 0.06752 | 2.000 105.0 0.5833 1.350 -0.650 7.44615
3 J793.69 | 3743 | 0297 | 029915 | 005414 | 1875 211 0.4167 125 2748 7.4705s
4 | sss.s7 | 17169 | 4297 | 029171 | 007301 | 1875 1Lt 0.2500 1.150 -0.850 9.665/s
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and negative bending are given in Table 4. Using M,, = 329.80 kN-m from Table 4
and replacing T, by T,/¢ in Eq. 13, k, = 0.03032. Substltutmg the values of &, ¢and

Ain Eq. 12, K, = 0. 02172 Equatmg this with the value of K, given by Eq. 4, r =
0.07757.

Also, as shown in Table 4, Eq. 8 gives r = 8.993/s. Equating the two values of , s
= 115.9mm. Therefore, 12mm diameter stirrups are selected with 110mm spacing as
shown in Fig. 3(b).

Checking for shear

The pure shear capacity V,,, and A, of the section shown in Fig. 3(b) are computed
in Table 5. From Eq. 35, V, = 392.6 kN < V /¢ (= 420.0 kN).

TABLE 5. Pure shear capacity and Ay, of the sections shown in Fig. 3(b).

Example _ _ _ _

No. b d Vc - $ Vs - Vm - MOI )‘m -
2A f.d M

0.17 Vf bd >y V+V =

4 K3 4 s VOI

(mm) | (mm) (kN) (mm) (kN) (kN) (kN-m) (m)

(1) 2] 3 4 (5) (6) (7) (8) )

1 300 | 534 143.1 110 | 302.8 4459 329.81 0.740

-2 350 | 610 190.7 120 317.1 507.8 589.76 1.160

3 400 | 656 234.4 130 314.7 549.1 793.69 1.445

4 400 | 671 239.7 100 418.5 658.2 588.57 0.894

The required enhanced pure shear capacity of the section is, therefore, obtained
by replacing V, by V,/¢in Eq. 35 as 420 + 1.6T,/¢b = 473.3kN. Next, putting V,, =
473.3 kN in Eq. 37, s = 100.9mm. Therefore, the stirrup spacing is reduced from
110mm to 100mm as shown in Fig. 3(c).

Torsional moment capacity

The torsional moment capacities in Modes 1, 2 and 3 of the section shown in Fig.
3(c), are computed in Table 6. The computed values of 7, R,, R;, K, and K, of the sec-
tion are also listed in the table.

TABLE 6. Calculation of torsional moment capacities of the sections shown in Fig. 3(c).

Example r K, ky T, =k, My, R, K,
No. from Eq. (8) {from Eq. (4) { fromEq. (14) (kN-m) from Eq. (6) | from Eq. (5)
(1) (2) ©) (4) (5) (6) (7)
1 0.08993 0.02518 0.0312 10.29 0.27070 0.05621
2 0.08295 0.02323 0.1805 106.45 0.27852 0.05184
3 0.08826 0.02592 0.1740 137.63 0.29925 0.05373
4 0.09665 0.02838 0.2822 166.10 0.33218 0.05883
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Table 6 (contd)
k! T] o k: lI"(fﬂl R3 k) T] = _k] MIII Tn E:ali]e:::d
fromEq. (19) (kN-m) from Eq. (7) | from Eq. (27) (kN-m) (kN-m) mode
(8) (9) (10) (11) (12) (13) (14)
0.0338 11.15 0.10169 -0.0040 - 1.32 10.29 1
0.1518 89.53 0.06752 0.4714 278.01 89.53 2
0.1790 141.58 0.05416 0.5928 468.92 137.63 1
0.2236 131.60 0.21297 0.2154 126.80 126.78 3

Table 6 shows that T,, T, and T, are 10.29, 11.15 and —1.32 kN-m, respectively.
The negative sign of T, indicates that Mode 3 failure is not feasible. Thus, the

theoretical torsional moment capacity T, is 10.29 kN-m and the failure will be in
Mode 1.

Example 2

Design a rectangular beam section if 7, = 63.75 kN-m, M, = 135.0 kN-m and
V,=212.5kN.

The estimated flexural moment capacity M, , is given in Table 2. A corresponding
preliminary trial section is shown in Fig. 3(a). Various details of the section are pre-
sented in Tables 3 and 4. Since Mode 2 behavior is indicated, Eq. 16 is used to get K,
= 0.03639. Thus, from Eq. 5 and 8, s = 128.2mm. A spacing of 120mm is, therefore,
selected as shown in Fig. 3(b).

Table 5 shows the pure shear capacity V;, and A, of the section. Substituting the
value of V,, in Eq. 35, V, = 164.9kN < V /¢. Thus, asin Example 1, the pure shear
capacity of the section is increased to 250.0 + 1.6 T,,/¢b = 592.9 kN.

Substituting V,, = 592.9 kN in Eq. 37, the required spacing for 12mm diameter
stirrups s, is obtained as 94.6mm. Therefore, as shown in Fig. 3(c), a spacing of
90mm is selected.

Next, the torsional moment capacities in Modes 1, 2 and 3 of the section shown in
Fig. 3(c), are computed and presented in Table 6. As can be seen, the theoretical tor-
sional moment capacity of the section is 89.53 kN-m, and Mode 2 failure is predicted.

Example 3

Design a rectangular sectionif 7, = 97.75 kN-m, M, = 324 0kN-m and V, = 204.0
kN.

Table 2 shows the design 7/M ratio (= 0.32) to be very close to the transitional s of
the reference section as indicated by the closeness of the &, and k, values. This close-
ness, however, did not pose any special problem in the solution. Since k was slightly
smaller, it was used in estimating M, and Mode 1 failure was assumed.
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The section shown in Fig. 3(a) is proportioned with « = 1.875. This indicates that
the interaction data of the reference section presented in Table 1 can be conveniently
used in the design of sections with different values of a.

The pure shear capacity of the section shown in Fig. 3(b) is presented in Table 5.
As in the case of Examples 1 and 2, the reduced shear capacity 17" ,was less than V/
¢. Accordingly, the shear capacity was increased. Calculations indicate that 14mm
diameter stirrups at 110mm as shown in Fig. 3(c) would be adequate.

Table 6 gives the theoretical torsional moment capacity T ,, of the section shown in
Fig. 3(c), as 137.63 kN-m.

Example 4

Design a rectangular beam section if 7, = 102.0 kN-m, M, = 27.0 kN-m and
V,=127.5kN.

The high value of (= 4.0) in Table 2 indicates that Mode 3 failure may occur.
However, as k, values are not available, a section will be initially proportioned on the
basis of the pure flexural moment My, estimated by using k, or k, value from Table 1.
The section will then be checked for Mode 3 failure. Since Table 1 does not contain
any value for p = 0.012, the required value of k, is obtained by interpolation. The k,
and the estimated flexural moment My, are presented in Table 2. A section propor-
tioned for My, are presented in Table 2. A section proportioned for M, is shown in
Fig. 3(a) and its details are given in Table 3.

Design procedures similar to those used in the previous examples are then fol-
lowed up to the checking of the shear capacity. The results of the various computa-
tions are presented in Tables 4 and 5. Figure 3(b) shows the section with stirrup spac-
ing decided on the basis of Mode 2 behavior. The calculations starting with the
checking of the shear capacity are presented here.

Substituting V,, from Table 5, in Eq. 35, V, = 178.2kN > V, /¢ (= 150.0kN). The
shear capacity is, thus, adequate although Ay, > A (= 0.20m). This is because, as in-
dicated in Fig. 1(b), Eq. 35 does not control the shear capacity at high T/V ratios.

In view of the high T/M ratio, the torsional moment capacity in Mode 3 of the sec-
tion shown in Fig. 3(b) is checked next. Substituting the values of K, A’and R, in Eq.
27, k,is obtained as 0.12871. Therefore, T; = k; M, = 0.12871 X 588.57 = 75.75 kN-
m < T,/¢ (= 120.0 kN-m). The torsional moment capacity in Mode 3 is, therefore, to
be increased at least to 120.0 kN-m. Setting T, = T,/¢ in Eq. 34, R, = 0.21297.

The required flexural moment capacity in negative bending is, thus, My, = R, M,
= 0.21297 x 588.57 = 125.35 kN-m. The corresponding required p’ = 0.0024. There-
fore, the required steel area at the top, A, = p’ bd, = 0.0024 X 400 X 692 = 665mm?.
Two 22mm diameter bars having 760mm? area are provided as shown in Fig. 3(c).

The torsional moment capacities of this section in Modes 1, 2 and 3 are presented
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in Table 6. As can be seen, the section has a nominal torsional moment capacity T,,
of 126.80 kN-m and a Mode 3 failure is indicated. It may be mentioned here that the
top steel area can be increased further to enhance the capacity in Mode 3 and thereby
eliminate the possibility of failure in this mode.

Comparison with ACI Code Equations

The sections designed in Examples 1, 2, 3 and 4 as shown in Fig. 3(c) were investi-
gated by using the ACI code torsion equations for comparison purpose. It was found
necessary to modify the designs slightly, to satisfy the code spacing requirements, by
introducing longitudinal bars at middepth and also, in some cases, by changing the
hanger size. The modified sections are shown in Fig. 4. The figure also shows the tor-
sional moment capacities of the sections as obtained by using the ACI code torsion
equations, as well as those given by the interactive strength equations, along with the
corresponding failure modes. As can be seen, exceptat averylowvalueof T, i.e., in
Example 1, the torsional moment capacity is consistently underestimated by the ACI
code equations.

$14@ ¢12@

[(b 2@ ﬁzfﬁ ["0 de [100 ¢c

100 ¢/c T = 1
{ renl 2920 2-922
2012 | J
(@]
2 1208 S |[ 2416 K| 26201 2Pt 2°+
J 402 L o928 l b0 28, l 702
A A AR . Y A RS
k300 k350 400 le—400—!
Example 1 Example 2 Example 3 Example 4
Tho= 10.29kN-m. Tq=97.07 kN-m.  Tn=137.63 kN-m.  Tn = 12678 kN-m.
© (Mode 1) (Mode 2)’ {Mode 1) (Mode 3)
T/ 2 12 KN-m. T/=75.06 kN-m.  Ty= 11248 kN-m. T = 107.06 kN-m.

Th= Torsional strength as
per ACt Code

Note: All dimensions are
n milbbmeter

FiG 4. Comparison with torsional strengths given by ACI code equations.

Conclusions

The interactive strength equations developed by Hasnat and Akhtaruzzamanl'6]
have been suitably adapted for the design of rectangular beams subjected to any
combination of torsion, bending, and shear.



Design of Rectangular Beams under Torsion, Bending and Shear 149

The design procedure basically consists of proportioning a section for a required
pure flexural moment capacity. The section is then designed for torsion using the
strength equations in their transformed forms.

The examples presented herein show that interaction data of a reference section
are useful in estimating the required pure flexural moment capacity. The interaction
data based only on Mode 1 and Mode 2 considerations are found satisfactory in most
cases. However, when a possibility of Mode 3 failure exists due to high ¢ and low p’,
the design is to be checked and modified accordingly if required.

It is also necessary to modify the design when M/V ratio (A) is less than or around
Ag; due to an overestimation of its shear strength by the basic strength equations.

Compared to the strength equations, the ACI code equations generally underesti-
mate the torsional strength of beams subjected to torsion, bending and shear.
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Notation

The following symbols are used in this paper :
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area of bottom and top longitudinal steel, mm?;
area of one leg of stirrup, mm?;
breadth of beam, mm;
effectivé depthin positive, lateral and negative bending, respectively, mm;
cylinder compressive strength, MPa;
yield strength of websteel, MPa,
yield strength of longitudinal steel, MPa;
overall depth of beam, mm;
ratio between T, T,, T;and M;
bending moment, kN-m;
pure flexural strength in positive, lateral and negative bending respectively,
kN-m; .
estimated pure flexural strength in positive bending, kN-m;
factored bending moment, kN-m;
A, fwy 0.9 x ¥,
s Mo
spacing of stirrups, mm;
torsional moment, kN-m;
torsional strength in Mode 1, Mode 2 and Mode 3 failure, respectively, kN-m;
nominal torsional moment capacity, kN-m;
factored torsional moment, kN-m;
shear force,kN;
pure shear capacity, kN;
nominal shear strength provided by concrete, kN;
nominal shear strength, kN;
reduced nominal shear strength, kN;
nominal shear strength provided by web reinforcement, kN;
factored shear force, kN;
shorter overall dimension of rectangular cross-section, mm;
shorter center-to-center dimension of closed stirrup, mm;
longer overall dimension of rectangular cross-section, mm;
longer center-to-center dimension of closed stirrup, mm;
h/b;
1+ p/YA;
p/YA-1;
Vb/2T,
M/V, m;
M,/ Vo5
(b2 + bh)/(2b + 4h), mm;
AJbd;
A,/bd;
0.75 x balanced steel ratio;
AClI code strength reduction factor; and
T/M.
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