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ABSTRACT. In this article. the author proved that certain classes of
operators, namely. classes of spectraloid. convexoid. normaloid, those
operators having their spectrum spectral sets and those operators having
their numerical ranges spectral set. are uniformly closed and arcwise con­
nected. Moreover. some set theoretical relationships between these classes
are also proved.
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Introduction

We consider an infinite dimensional complex Hilbert space H. We denote by L(H),
the algebra of all bounded linear operators on H.

For an operator A E L(H), u (A) denotes the spectrum of A. The spectral radius,
r(A), is defined by the equality

r(A)=sup{IAI:AEU(A)} .

If W(A) denotes the numerical range of A, then W(A) = {AE (l : A= (Ae, e) for some
II e II = 1 }, and the numerical radius w(A) is defined by, w(A) = sup { I A I : A E

W(A) }.

There are many classes of operators that attract the interest of many mathemati­
cians, like unitary operators, normal operators, compact operators.

The class of normal operators denoted by N, has very nice properties, it is un­
iformly closed, arcwise connected, and moreover, if A ENe L(H), then A satisfies
the following
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1. w(A) = IIA II
2. W(A) = ch IT (A), where ch means the "Convex hull"
3. r(A) = w(A)

None of the above statements characterise the normal operator, since there are
non-normal operators satiS'fy one or more of these properties.

Halmos[1] studied some operators which are not normal and satisfy some of the
above properties. Halmos, in his book[1], gave names for those operators in order to
classify them.

Definition 1

If A E L(H) such that w(A) = II A II, then A is called normaloid. Let M = set of all
normaloid operators on He L(H).

Definition 2

If A E L(H) such that W(A) = ch (J (A), then A is said to be convexoid. Let

C = { A E L(H) : W(A) = ch IT (A) } .

Definition 3

If A E L(H) such that r(A) = w(A), then A is spectraloid. Let 5 = {A E L(H) : r(A)
= w(A) }.

It is known that a normaloid operator is spectraloid; also, a convexoid operator is
spectraloid. It is easy to give a normaloid operator which is not convexoid and a con­
vexoid operator which is not normaloid; for these information, see: Halmos(1/ Prob­
lem 174.

It is clear that M C Sand C C S, moreover M n C =1= 4>, in fact N C M n C.

Definition 4

A subset X of the complex plane ([ is said to be a spectral set of an operator A E

L(!!) , if <T (A) C X and Ilf(A) II ~ sup {If(z)1 :Z E X} = II f Ilx ' for any rational function
[wIth poles off X.

One more nice property of normal operator concerning the concept of spectral set,
namely, if A is normal operator then <T (A) is a spectral set of A, see Berberian[2l. Let
T = { A E L(H) : <T(A) is a spectral set of A }, and let R = { A E L(H)

W(A) is a spectral set of A }, it is clear that NeT.

In this article, the author investigates more properties of those classes of
operators. He shall prove that: NeT eRe M c 5, and T eRn C c M n c, so that
he can represent the relations between these classes by the following diagram.

Moreover, he shall prove that all of these classes are uniformly closed and arcwise
connected.
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The class T of all operators on H whose spectrum is a spectral set is uniformly
closed and arcwise connected.

Proof

It is known that an operator A has a (A) as a spectral set if, and only if,f(A) is nor­
maloid operator for every rational functionfwith poles off a(A), (see: Berberian121).
With this in mind, let (An) C T such that An converges uniformly to A, need to show
that A E T. This implies thatf(An) is normaloid, V n, i.e., w(f(An)) == Ilf(A n ) II, for
every rational function with poles off a(f(An)). Since An converges uniformly (in
norm) to A, f(An) converges to f(A), for every analytic functionf, (by functional cal­
culus); and by continuity of the numerical range (see: HalmoslJJ Problem 220)
w(f(A n )) converges to w(f(A)).

One can also see that Ilf(A n) II converges to Ilf(A) II so that by uniqueness of the limit
one obtains that w(f(A)) == Ilf(A) II for every rational function with poles off a (f(A)),
i. e., a(A) is spectral set of A, or A E T, which proves the first part of the theorem.
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Concerning the other part, let A E T, author is going to prove that 'A • A E T, V 'A E

([. It is known that if X is a spectral set for an operator A E L(H),fis an analytic func­
tion on X, thenf(X) is a spectral set off(A), (see: Berberian[2]), with this in mind, let
f(x) == 'Ax, thensincea(A)isaspectralsetofA, thenf(a(A)) is a spectral set off(A) ,
i. e., 'A a (A) is a spectral set of 'A A, and by functional calculus 'A a(A) == a( 'AA), thus
Tis arcwise connected.

Theorem 2

The class R of all operators on H, whose the closure of its numerical range is a
spectral set, is uniformly closed and arcwise connected.
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Proof

Let (An) C R such that (An) converges uniformly to A E L(H), then by continuity of
the numerical range (see: HalmoslIJ Problem 220) one obtains that W(A n ) con­
verges to W(A). In order to show that W(A) is a spectral set of A, it is

enough to show that for any polynomial P, II P(A) II ::; II P Ilw(Al' since <r(A) C W(A).
Since An converges uniformly to A, P(A n) converges uniformly to P(A), and thus,

II P(A) II ::; II P(A) - P(An) II + II P(An) II
for n > N.

This implies that II P(A) II ::; II P(An) II + E, on the other hand, W(A n) is a
spectral set of An' for every n, and therefore,

II P(A ) II ::; II P 11- = sup { IP(z) I z E W(An) }.n W(Anl

Let zn = sup { P(z) : z E W(A n) }, then (zn) converges to Zo E W(A) ,

where Izol ::; sup {I P(z) I : z E W(A) }. Combining these inequalities, one
should obtain,

II P(A) II ::; E + II P IIw(A l:5: 2 E + II P Ilw(A)
n

and since E is arbitrary, we have W(A) is a spectral set of A or that A E R.

R is arcwise connected since one has W(M) = AW(A) and the result in
Berberian(2l, namely, X is a spectral set of A then f(X) is a spectral set of f(A), where
fis any analytic function on X, the functionf(x) = Ax suffices our need.

TheoremJ

The class M of all normaloid operators on H is uniformly closed and arcwise con­
nected.

Proof

If (An) C M, converges uniformly to A then we have II An II converges to II A II and
w(An) converges to w(A), and since, w(An) = II An II, Vn, we conclude that w(A) =

IIAII,i.e.,AEM.

For the other part, it is clear that w(M) = IAlw(A), since W(M) = A W(A),
moreover, II M II = IAIII A If which implies that A. A is normaloid if A is so.

Theorem 4

The class C of all convexoid operators on H, is uniformly closed and arcwise con­
nected.
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Let (An) C C, such that An converges uniformly to A, then WeAn) == ch a

(An)' for every n; we need to show that W(A) = ch a (A), where ch a (A) ==

convex hull of a (A). By the continuity of th-e numerical range, WeAn) con­

verges to W(A). Since a(A) C W(A), by convexity of W(A), ch a(A) C W(A) .

It is enough to show that W(A) C ch a(A). For let 'A' E W(A) , there is 'An E

W(A n ) , V'n, 'An converges to 'A, and, 'An E ch a(An)' for every n. It is known that the
spectrum is an upper semicontinuous (see: Halmos/l] Problem 103), therefore II A ­
An II < E, n > N, since a(A) C ch a(A), one concludes that a(An) C ch a(A) for n >
N, so that d('An, ch a(A)), < E, n > N, which implies that 'An E ch a(A), change E arbit­
rarily to conclude that 'An € ch a(A) for every n > N. But 'An converges to 'A and

ch a(A) is compact and thus 'A E ch a(A),i.e. W(A) == ch a(A), or A E C.

The other part is clear, since one has W(XA) == 'A W(A) and ch a(XA)
== ch 'A a(A) == 'A ch a(A), which means the equality of W(M), and ch a (M),

holds if the quality of W(A) and ch a(A) does.

TheoremS

The class S of all spectraloid operators on H is uniformly closed and arcwise con­
nected.

Proof

Let (An) C S such that An converges uniformly to A. Then weAn) == r(An) for every
n, by continuity of the numerical radius weAn) converges to w(A).

Since, the spectrum is upper semicontinuous (see: HalmoslJ ] page 56), one con­
cludes that if X == a(A) + E and" An - A " < E then a(A n) C X == a(A) + E, from which
we obtain r(An) ~ r (A). But we have also that w(A) < weAn) + E, for every n > N,
so that w(A) < weAn) + E == r(A n) + E < rCA) + E, since E is arbitrary, w(A) ::s rCA).
It is known that for any operator rCA) ~ w(A), thus rCA) == w(A) or A E S.

It is easy to show that S is arcwise connected.

Proposition 6

If A E L(H) such thata(A) is a spectral setof A, thenA, is convexoid, i.e., Tc C.

Proof

Since a(A) C W(A) then ch a(A) C W(A). It is known that any super set
of a spectral set of a given operator is also a spectral set for that operator

(see: Berberian/2I). Therefore, since a(A) is a spectral set of A then ch a(A), W(A)

are so. But it is known also that, if W(A) is a spectral set, it is the intersec­

tion of all convex spectral sets of A, (see: Williams13l), thus W(A) C ch a(A),
which means that A is convexoid.
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If A E L(H), (T(A) is spectral set of A then W(A)isaspectralsetofA,i.e.,
TCR.

Proof

Clear (see: proof of the previous proposition).

Proposition 8

If A E L(H) such that W(A) is a spectral set of A, then A is normaloid,
i.e., ReM.

Proof

It is known that for any operator A E L(H), w(A) :::; II A 1/, (see: Halmos11j

Problem 103). Since W(A) is a spectral set of A, we have 1/ "I (A) II ~ 11"111- ,for
__ W(A)

any rational function "I, with poles outside W(A). In particular, for 'Y(z) == z, one
obtains,

II A II :::; 11"1 Ilw(A) sup { I"I (z) I : Z E W(A) }

~ sup {izi : Z E W(A)} w(A) ,

which means that w(A) == II A II, i. e, A is normaloid.

Remarks:

(1) There is an operator A such that W(A) is a spectral set but (T(A) is not a
spectral set for A. This operator is defined by Hartman[4J. He defines A to be a bilat­
eral weighted shift with an == 1/2 , for n < 0, an == 1, for n 2:: 0 as a sequence of weights.
This operator has the following properties:

II A" == 1 == r(A), where,

(T(A) == {A E ([ : Y2 :::; IA I :::; 1 } .

The operator A is hyponormal, and (T(A) is not a spectral set of A.

Since A is a contraction, the closed uit disc D is a spectral set of A.

But ch (T(A) == ch { A ([ : V2 :::; I A I ~ 1 } == D, i.e., ch (T(A) is a spectral set of A,

thus, W(A) is a spectral set of A.

We conclude that A E R, but A ~ T.

(2) There is a normaloid operator A such that (T(A) is not a spectral set of A.
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Indeed:

Let K = [ ~ ~ 1and define A [~ ~ 1' this operator has the

following properties:

IjAII == 1, W(A) == ch (D (0, 112) U { 1 }), where D (0,'12) is the closed disc with
radius 112 .

Thus (T(A) == {O, I} and ch (T(A) == [0, 1], therefore A is normaloid.

Define f to be [(z) = z - Z2 then 11[11[0,11 = ~, and II [(A) 11[0,1] =11 K II = 1.

This implies that ch (T(A) is not a spectral set of A and thus (T(A) is not a spectral
set of A.

We conclude that A EM but A f. T.

(3) There is a convexoid operator A such that W(A) is not a spectral set of
A.

Indeed:

Let K = [~ ~ ] and B be a normal operator such that (1(B) = D(O, Y2), the

closed disc with center °and radius 1;2.

Define A = [~ ~ ] ,this operator has the following properties:

(T(A) == 0(0, Y2), and W(A) == ch D(O, V2), thus A is convexoid. Since" A II = 1,

for fez) == z on W(A), and thus "f(A) II == II A II == 1. But, 11/11- == sup - Iz 1==
__ W(A) ZE W(A)

V2 < II f(A) II, thus W(A) is not a spectral set of A.

We conclude that A E C, but A f. R.
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Symbols Appendix

Bounded linear operator on H.
Class of all convexoid operators on H.
Convex hull ofa(A)
Spectrum of A.
Vector in H.

: Analytic function on X.
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H
L(H)
'A
M
N

IIAII
IIfllx
R
rCA)
S
T
W(A)

W(A)
w(A)
X

M.M. Kutkut

Hilbert space.
Algebra of all bounded linear operators on H.
Complex number.
Class of normaloid operators on H.
Class of normal operators on H.
NormofA.
Norm offonX.

Class of all operators A on H, for which W(A) is a spectral set.
Spectral radius of A .

. Class of all spectraloid operators on H.
Class of all ope~ators A on H, for which a(A) is a spectral set.
Numerical range of A.

. Closure of the numerical range A.
Numerical radius
A set of complex numbers.
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