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Abstract. A robust Bayesian estimation of location parameter 6 of
symmetric stable distributions a U (2, 1.5, 1, 0.5) used to estimate the
location parameter 6 for the posterior distribution. Normal distribution
is used as special case form the family of symmetric stable dis-
tributions to show the derivation of the asymptotic estimation of loca-
tion parameter. Computer simulation used to investigate the per-
formance of our robust procedure. Our robust procedure can be
adopted to investigate other symmetric distribution.
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Introduction

Stable distributions are rich class of distributions that allow skewness and heavy
tails. The class was characterized by Paul Levy (1954), in his study of sums of
independent identically distributed terms. The general stable distribution is de-
scribed by four parameters: an index of stability a [ (0, 2], a skewness pa-
rameter 3 [0 [-1, 1], a scale parameter y> 0 and a location parameter 8 O R.
The lack of closed formulas for densities and distribution functions for all but a
few stable distributions (Gaussian, Cauchy and Levy) has been a major draw-
back to the use of stable distributions by practitionerst!l.

There are multiple parameterizations for stable distributions. We will use the
following:

Definition: A random variable X is stable S (a, S, y; 0) if and only if
X1=47+B, (1.1)
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where 0<a < 2,-1<B<1,4>0, BOR, Z=Z(a, P) is a random variable
with characteristic function

Bexp(—|u|“ [1+i/3tan@(s'gn u) (ul™ D)) a#1
E[exp(iuz)] = (1.2)
Eéxp(—lU|[1+IB “(sign w) Injul)  a=1.

and
1 u<o0
sign uzg) u=0

Bu>0.

Some properties of stable distributions are:

1. Every stable distribution has a mode.

2. It is clear that Z (2, 0) ~ N (0, 2), Z (1, 0) ~ Cauchy (0, 1) and Z (— 0) ~
Levy (0, 1).

3. When Z (a, - B)d =—Z (a, PB) then the distribution is symmetric.

4. When 1 <a < 2,themeanof X~ S (a, B, ¥, 0)is u = E (X) = 86— Bytan

na ta
> As a | 1, it has a mean of 4 = f tan T.When/o’ = 0, the mean is al-

ways 0. When 8 > 0, the mean tends to + c because both tail are getting heavi-
er, the right tail is heavier than left. By symmetry, the # < 0 case has the mean
tends to — oo. Finally, when o reaches 1, the tails are too heavy for the integral

[0e]

EX) = J' xf (x)dx, to converge.

5. Tail approximation: let X ~ S (a, f) with0<a <2,— 1</ <1. Then for
large X,

PX >x)=C,(1+p)x1,
[l a,f)~aCq (1+f) x(@*D),
where C, =T () (Sin%a)/ 1. Using the symmetry property, the lower tail

(1.3)

properties are similar.

6. The class of distribution functions, D, selected for the study consists of all
df’s F(x — 6), -0 < 8 < oo, where F' (x); = S, (x); and S, (x) is the df of the sym-
metric stable distribution with index of stability a. The probability density func-
tion (pdf) f'(x) = F’ (x) is represented by the inverse Fourier transform of the cdf
(with the location parameter equal to zero and the scale parameter equal to one)
as:



Note that for a = 2, we have a normal distribution with mean zero and variance

22,3
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T 17 @
f(x)=— fe " e™dt == fe™ cos(tx)dt —oo<x <oa
(X) 2n_j m(|)’ (tx) (1.4)

7. The quantile function & (¢) = F-1(¢), 0 < ¢ < 1, is uniquely defined!*].

Tables 1 and 2 show some of quantiles and density values of stable dis-
tributions (a = 2, 1.5, 1 and 0.5). Also Fig. 1 and 2 show distribution functions
and densities!*].

Table 1. f (xq) of some stable distributions.

! 0.50 0.75 0.95

2.00 0.282095 0.224702 0.072928

1.50 0.287353 0.206242 0.030029

1.00 0.318310 0.159155 0.007790

0.50 0.636620 0.065480 0.000413

Table 2. Quantiles of stable distributions.
q
0.60 0.75 0.90 0.95 0.99
a

2.00 0.35827 0.95387 1.81238 2.32617 3.28995
1.50 0.35334 0.96893 2.06146 0.05194 7.73644
1.00 0.32492 1.00000 3.07768 6.31375 31.82052
0.50 0.20889 1.28383 12.7413 57.30403 1559.72610
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Fig. 1. Symmetric stable distribution functions.
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Fig. 2. Symmetric stable densities.




Robust Bayesian Estimation of Location for Symmetric... 97

Bayesian Estimation

Let X, X, ..., X be an observable random variable with density f'(x / 6), 6 0
R.

f(x/0)= %J’e_ta cos(t(x—@))dt —oo<x < (2.1)
0

where a =2, 1.5, 1 or 0.5. A prior distribution on the unobservable parameter 0
has to be subjectively elicited

p(6)=— ——0<f <o, (2.2)

Cauchy distribution has been chosen since it has a heavy tail, so the estimates
will be robust. The posterior expectation of the quantity m (6), a function of the
location parameter, is of interest, if it does exist. If it does not exist then the oth-
er measure of location such as the median or the trimmed mean will be used in-
stead. The posterior distribution of the location parameter Ois given the var-
iables xy, x,, ..., X, 1s:

([ 0 /000@) 6
J'[l_linzlf(xi/e)]p(e)de 1+

F(BIX, o X) = 192 M e cost(x -O)t]  (2.3)
0

Under the squared error loss function, the Bayes estimation of m (6) is the
posterior mean which is given by:

MO 104 /01d0

E(m(@)/x) =1+ . (2.4)
[, f(x/6)de

o

Since this distribution is unknown and the ratio of integrals in (2.4) does not
seem to take a closed form and can not be approximated by a known dis-
tribution, the Importance sampling method will be used to sample from the pos-
terior and then study the samples properties[5 6],

Results

Since the densities of stable distribution do not have a close form for all a, a
special case will be chosen to show the method estimation (a = 2).
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1 2e-Z(Xi‘9)2/4
£(8/x) = 1’19 . .
[ e 2% de
1+6?

and

2] . e 2 (%-6%/4 49
E(8/x) = 1+19 - .
J— e—Z(Xi—B) /4d9
1+6°

then a numerical estimation of the expectation is given by

n o6

E/X) = ﬂ
n

Z 1

i=1 1+92

3.1)

(3.2)

(3.3)

Table 3 shows a summary of the samples that were generated from posterior
distributions. It seems that the median in all distributions gave a good ap-
proximation for the location parameter. The first and third quartiles are good es-
timates of the real quartiles in all the distributions. Also, Fig. 3 to 12 show the
shape of the posterior distributions and histograms of the samples. We can say
that the median is the best measure of location for the family of symmetric
stable distributions. However, in some cases such as a = 2 the mean is better.

Table 3. Summary of samples from posterior distributions.

q
Min 01 Med Mean 03 Max
a
2.00 —-18.711 - 1.026 —0.004 0.003 1.147 17.060
1.50 —85.408 - 2.393 0.041 -0.271 1.642 159.381
1.00 —-1406.2 -11.985 0.148 - 14.136 1540.8
0.50 - -29307 —0.943 - 194740 -
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Fig. 3. Posterior shape when a=2.

Fig. 4. Posterior shape when a=1.5.

Fig. 5. Posterior shape when a=1.
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Fig. 6. Posterior shape when a=1.

Fig. 7. Posterior shape when a = 0.5.
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Fig. 8. Posterior shape when a = 0.5.
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Fig. 9. Simulation of posterior shape when a =2.

Fig. 10. Simulation of posterior shape when a=1.5.

Fig. 11. Simulation of posterior shape when a=1.
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Fig. 12. Simulation of posterior shape when a = 0.5.
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