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ABSTRACT. We  give a characterization of the primitive classes of K*(BU(n))
in terms of its rational generators and use that to determine new primitive
classes.

Introduction

The BU-ring spectrum K determines a generalized homology theory K* with coefficient
group

Kn(pt) = [Sn , K] = πn(K)

It is well known that K*(K) can be regarded as a Hopf algebra over π*(K), and for each
X (space or spectrum) we can define a coaction map

ψ : K*(X) → K*(K) ⊗π*(K) K*(X)

which gives K*(K) the structure of a comodule over K*(K). The primitive submodule
PK*(X) is defined by

PK*(X) = { α∈K*(X): ψ (α) = 1 ⊗ α }

In [1] we studied the case X = MU(2) and gave a characteristic theorem which de-
termines the primitive classes of K*(BU)(2)) in terms of its rational generators. In [2]
the same case is studied (among other things) where K*(BU(2)) is identified with a cer-
tain submobule of Q[X, Y] whose homogeneous elements determine the primitive class-
es of K*(BU(2)). In [3] the authors generalized the case of [2] to the space BU[n] where
they identify K*(BU(n)) with a certain submodule of Q[x1 , x2, ... xn] whose homo-
geneous elements again determine the primitive classes of K*(BU(n)).

Although the above paper can be regarded as the leading and most comprehensive
study concern BU(n), but the primitive classes which were constructed there are all de-
rived initially from BU(2).
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Here we generalize the results of [1] and give a characterization of the primitive
classes of K*(BU(n)) in terms of its rational generators and use that to determine new
primitive classes of K*(BU(n)) which are not derived from K*(BU(2)).

§ 1. Notations

Let { β1 , β2, ... , βn , ... } be the usual π*(K)-basis of K*(CP∞). For each positive in-
teger n we define

Γn = un(β1)n bn = un βn (1.1)

where u∈ π2(K) is the usual generator and the product (β1)n is induced by the tensor
product : CP∞ × CP∞  → CP∞ . Now using the result of [4], [5] one can prove (see [1]
for details) that

Γn  =  Σ  r! Sr
n br (1.2)

r = 1

were Sr
n is the sterling number of the second kind.

Let i: CP∞  → BU be the canonical inclusion and denote the images of βn , Γn under i*
also by βn, Γn respectively. The later classes of course can be multiplied in K*(BU) by
using the Whitney sum maps: BU(m) × BU(n) → BU(m + n). The following is a well
known (see[6; p.47] or [7; 16.31]).

Theorem 1.3 

(i) K*(BU(n)) is free over π*(K) with a base consisting of the monomials

βi1 
βi2 ... βir

such that i1 > 0, i2 > 0, ... , ir 0, 0 ≤ r ≤ n (The monomial with r = 0 is interpreted as 1)

(ii) K*(MU(n)) is free over π*(K) with a base consisting of the monomials

 βi1 
βi2 ... βir

such that i1 > 0, i2 > 0, ... in > 0.

(iii) K*(BU) is the polynomial algebra π*(K) [β1 , β2, ... , βn, ... ].

Remark 1.4

If we replace the βi’s by the bi’s then all the statements given in the above theorem
remain true.

§2. Primitivity in K*(BU)

In this section we shall see that the classes Γ1 , Γ2, ... play an important role in the de-
termination of the primitive clases of K*(BU). 

Consider the Hurewicz homomorphism hs
K : π*

s (BU) → K*(BU). It is easy to see that
Γ1 is in the image of hs

K . But this is a natural homomorphism of Pontrjagin rings, hence
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it follows that all the classes Γ1 , Γ2 , ... are in the image of hs
K  and hence

Im hs
K ⊃_ Z [Γ1, Γ2, ... , Γn , ... ] 2.1

Now since K*(BU) is torsion-free, the map: K*(BU) → K*(BU) ⊗Q is a monomor-
phism. By denoting the image of Γn under this map also by Γn we have

Im hs
KQ ⊃_ Q [Γ1, Γ2, ... , Γn , ... ]

where hs
KQ : π*

s (BU) ⊗Q →K*(BU) ⊗Q = (KQ)* (BU).

In fact by a simple application of the Atiyah-Hirzebruch spectral sequence

E2
u, v =

 ~
Hu (BU; πs

v) ⇒ πs
u +v(BU)

one can prove by comparing the ranks that (see [1] for details)

Im hs
KQ = Q [Γ1 , Γ2 , ... , Γn , ... ] (2.2)

Now since π*(K) is torsion-free hs
KQ maps πs

* (BU) ⊗Q isomorphically onto P(KQ)*
(BU). Hence we have proved the following:

Proposition 2.3

P(KQ)* (BU)  ≈ Q [Γ1 , Γ2 , ... , Γn , ...]

The following result can be proved exactly the same as (2.3) or alternatively one can
∞

 use the above result and the stable equivalence BU =   ∨    MU(n) of [8; Th. 1.4.2] to
n = 1

prove it.

Proposition 2.4

P(KQ)* (MU(n)) is free over Q with a base consisting of all monomials Γi1
 Γi2

 ... Γin
such that i1 > 0, i2 > 0, ... , in > 0.

Note that such a monomial is not divisible in K*(MU(n)), but more complicated ex-
pressions may be well be. In fact we have the following (see [1 ; 6.32]).

Theorem 2.5

An element A in K*(MU(n) is primitive if and only if it can be written in the form

A  =  Σ  λiΓmi,1
 Γmi,2 ... Γmi,n

      λi ∈ Q
i

such that when we rewrite it in terms of the π*(K)-base { bi1
 bi2 ... bin }, the induced

formula has integral coefficients.

Proof

Since K*(MU(n)) is torsion-free we have a monomorphism α: K*(MU(n)) → K*(MU
(n)) ⊗Q ≈ (KQ)* (MU(n)). Now let
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A  =  Σ  λiΓmi,1
 Γmi,2 ... Γmi,n

      λi ∈ Q
i

Then by the above theorem A is in P(KQ)* (MU(n)). Now if A also satisfies the condi-
tion of the theorem then it is in the image of α and so it represents an element of PK*
(MU(n)) as required.

Conversely if A is in PK*(MU(n)) then it is also in P(KQ)* (MU(n)) where we iden-
tify A with its image under the monomorphism α. Hence by (2.4) we can write A in the
form

A  =  Σ  λiΓmi,1
 Γmi,2 ... Γmi,n

      λi ∈ Q
i

Note that the condition of the theorem is satisfied since A essentially is in K*(MU(n)).

Theorem 2.6

An element A in K*(MU(n)) is primitive if and only if it can be written in the form

A  =  Σ  λiΓmi,1
 Γmi,2 ... Γmi,n

      λi ∈ Q
i

such that λ1, λ2, ... , λk are rational numbers satisfy the following condition

is an integer for all n-tuples (k1, k2, ... kn) of positive integers contains r- distinct ele-
ments repeated n1, n2, ... nr times, respectively, where ϕ runs over all the permutations
of (1, 2, ... n).

Proof

Suppose that A is a primitive class of K*(MU(n)). Then by the above theorem we can
write it in the form

A  =  Σ  λiΓmi,1
 Γmi,2 ... Γmi,n

      λi ∈ Q
i

such that when we write it in terms of the π*(K)-base {bi1 bi2
 ... bin

 }, the induced for-
mula has integral coefficients. Now by (1.2) we have

Let a(k1 , k2, ... , kn) be the coefficient of bk1
 bk2

 ... bkn
. Then we have
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To complete the long and tedious proof of the theorem one use the induction on k = k1
+ k2 + ... + kn together with the formula (see [9; p. 226]).

See [1; 6.33] for the proof of the two dimensional case.

Remark 2.7. As we mentioned before the primitive classes of K*(BU(n) are repre-
sented in [3] by rational polynomials satisfy certain conditions. The primitive class A in
the above theorem is corresponding to the rational polynomial f (x1 , ... , xn) defined by

§3. Some Primitive Elements in K*(BU)

Here we shall use theorem (2.6) to determine the primitive classes of K*(MU(n)) of
the form λ(Γm

n–1 Γm+ns – Gn
m+s), where λ ∈ Q. 

By the above theorem such a class is primitive if and only if the following expression

is an integer for each n-tuple (k1, k2, ... kn) of positive integers containing r distinct ele-
ments repeated n1, n2, ... , nr times, respectively.

Notations 3.1. Let

It is easy to show that

Proposition 3.2
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Next we recall the definition of a numerical function m(t) defined on the positive in-
tegers. Let vp(k) be the exponent of the prime p in k, so that k = Πp p

vp(k).

Definition 3.3. [10] If t is a positive integer, we define m(t) by

Let Mn(t) be the highest common factor of the expressions kn(kt–1) where k runs over
the positive integers. One can prove the following

Proposition 3.4.

[10; p. 143] For each prime p we have,

vp(Mn(t) = Min { n , vp (m(t)) }

In particular when n is large enough we have Mn(t) = m(t).

Returning to our case we want to find the divisibility in the expression

From 3.2 (ii) it is easy to show that when n is an odd prime we can choose s (may take 
s = n – 1) such kmXk is a multiplication of Mm(n, s) where we define

vp(Mm(n, s)) = Min { m, vp (n.m2 (s)) } (3.5)

Note that when m is big enough we have Mm(n, s) = n.m2(s).

Now n is an odd prime. Hence (n – 1)! / n1n2! ... nr! is an integer. Therefore it follows
from the above remark together with fomula (i) of (3.2) that the expression (*) is divis-
ible by Mm(n,s). We have proved the following:

Proposition 3.6.

Let p be an odd prime. For each positive integer m there is a primitive class in K*
(MU(p)) of the form
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Finally we want to mention that the primitive classes constructed here are only ex-
amples of the use of theorem (2.6) and we can form more of them using the same meth-
od. Also all of these classes can be constructed in the language of [3] using the same
method (see remark (2.7)), but here the primitive classes are more recognizable.
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