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ABSTRACT. The present paper is an initial attempt to adapt the fault-tree
methodology of reliability engineering to the quantification of security exposure
of computer systems. In this new context, a fault tree can be described as a logic
diagram whose input represents breach events at various system levels, and
whose vertices represent logic operations or gates. The root or output of the fault
tree can be any of the undesired top events. The present paper briefly surveys
algorithms for converting the switching (Boolean) expression of the indicator
variable for the top event into a probability expression. Once the top-event
probability is determined, it can be multiplied by the system's vulnerability to
that event to yield a quantified value of the system’'s exposure to it. The present
paper also handles the doubly-stochastic problem of estimating the uncertainty in
the top-event probability by using an analytic exact formula relating the variance
of the top-event probability to the variances of the basic-event probabilities. An
example of a typical computer system is presented wherein numerical estimates
are obtained for the top-event probabilities and their variances and also for the
importance ranking of the various breach events.

1. Introduction

A new trend in the study of computer system security is to exploit similarities between
reliability and security to develop quantitative measures for "operational security”
(Brocklehurst et al., 1994). In particular, the fault-tree model, a traditional reliability
methodology used in the analysis and design of safety-critical systems, is now being
considered also in the analysis and design of security-critical systems (Brooke & Paige,
2003).

The present paper is an initial attempt in the exploration of the possibility of using
fault trees in the quantitative assessment of the effect of security breaches on a computer
system. Such an assessment can be based on the following

1. Specification of all foreseeable types of basic breach events. These events fall
under many categories such as catastrophes, hardware and program failures, human
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carelessness, malicious damage, malicious programs, and crime. For every single type of
breach events, the probability of occurrence over a stated period of time should be
estimated. However, such an estimation can be made only with a very high uncertainty.

2. Observation of the various types of security or safeguard measures introduced
during the design and implementation of the system. These may include account numbers
and passwords, authentication tables, file access restrictions, encryption techniques, as well
as physical, administrative, legal, and societal control (Martin, 1973; O'Gorman, 2003).

3. Definition of the undesired top events resulting from a security breach. These
may fall into some of the six categories: computer's performance degradation, inability to
process, loss of data (files, records, and programs), unauthorized/inadvertent modification
of data, unauthorized reading or copying of data, and permanent hardware malfunction. An
estimation should be made of the system's vulnerability to each of these events which
equals the cost incurred by the system if that event took place.

4. Mathematical modeling of the logical relations between the aforementioned
entities.

To adapt fault trees to the modeling of security exposures of computer systems, a
fault tree is viewed as a logic diagram whose inputs represent breach events at various
system levels, and whose vertices represent logic operations or gates. The root or output of
the fault tree can be any of the undesired top events. For each of these top events, a
particular fault tree can be constructed taking into consideration the characteristics of
typical present computer systems. As a logic tree, a fault tree produces a switching
expression for the indicator variable of its top event in terms of the corresponding variables
of its basic events. Usually, the expression is in a sum-of-products (s-o-p) form, and is not
readily useful in expressing the top-event probability in terms of basic event probabilities.
The present paper briefly surveys algorithms for converting the switching (Boolean)
expression of the indicator variable for the top event into a probability expression. These
include algorithms that orthogonalize sum-of-products expressions by making their terms
disjoint, algorithms that maintain or produce statistically-independent products, and
expansion (factoring) algorithms or combinations thereof. Once the top-event probability
is determined it can be multiplied by the system's vulnerability to that event to yield a
quantitative value of the system's exposure to it.

An issue of crucial importance in the study of security breaches is that any
predictions of basic-event probabilities will certainly involve relatively high uncertainties.
This issue is handled in reliability engineering either by dealing with fuzzy, rather than
crisp probabilities (Tanaka er al., 1983; Weber, 1994) or by considering the pertinent
probabilities as random variables (Rushdi, 1985). In this latter approach, the problem of
analyzing a fault tree is said to be doubly stochastic.

The present paper employs the doubly-stochastic approach in estimating the
uncertainty in the top-event probability taking into consideration the uncertainties in the
basic-event probabilities (Jackson, 1982; Laviron and Heising, 1985; Dezfuli and
Modarres, 1985; Rushdi, 1985; Rushdi and Kafrawy, 1988; Kafrawy and Rushdi, 1990).
The top-event probability is a multiaffine function of the basic-event probabilities
(Rushdi, 1983(b)), and hence it has a finite multivariable Taylor's expansion. Therefore,
an exact formula relating the variance of the top-event probability to the variances of the
basic-event probabilities can be obtained (Rushdi, 1985). Numerical results are obtained
for the variances of the top-event probabilities in typical computer systems, and also for
the importance ranking of the various breach events.
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The rest of the paper is organized as follows. Section 2 presents a detailed list of
pertinent notation, while section 3 discusses various issues involved in the study of the
security of modern computer systems such as basic breach events, security measures, and
undesired top events. Section 4 gives the reader a quick glimpse of fault trees by citing a
few small examples. A quick survey of the fundamental families of algorithms used in the
analysis of fault trees is presented in section 5, which discusses also how a symbolic
expression of the top-event probability can be utilized in the importance ranking of the
various basic events. The uncertainty analysis of fault-tree outputs is reviewed in section
6, which presents analytic formulas for the mean and variance of the top-event probability,
in the two cases when the basic-event probabilities are statistically dependent or not.
Section 7 combines the ideas and concepts of the previous section in a unified numerical
example in which a certain security situation is fault-tree modeled, and computations are
made for the top-event probability and its variance and also for the importance measures of
the basic events. Section 8 concludes the paper.

2. List of Notation

Number of systems components relevant to the fault tree.

n

Xi, X Indicator variables for the occurrence and non-occurrence of basic event { at
time ¢. These are switching (Boolean) random variables; Xi=1and X, =0if
i occurs, and Yi =0 and X; =1 if idoes not occur.

S Indicator variable for the existence of the top event at time ¢.

T Implies the transpose of a vector.
P(A) Probability of event A.

E(,) Expectation of random variable 7, (the indicath variable of event A).

qi Probability of occurrence of basic event 1 (treated as a random variable);
g =P(X:=1)=E(X:)=1-E(X,)=1-p,.

Q Top-event probability; also called system unavailability (treated as a random

function); Q=P(S=1)=E(S)=1-R.

q N-dimensional vector of basic-event probabilities; ¢ =g, g, ...q, 1" .

Vi Mean value of g; v, =[v,, v, ..'v,,1".

Vij Central moment j of gi; vy = Ef(qi — vii)' }, j=2.

i Mean value of Q.

U Central moment j of Q; 4, =E{(Q—u,)' },j22.

Jir The joint central moment of the random variables g¢i,q), .. and 4¢,;
Jyo = Elg, vydg; vy)..(q, v,)].

Jij The joint central moment of the two random variables ¢;and g, ; called the

covariance of these two variables and denoted by Cov(gi, g,).
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Pij The correlation coefficient between q, and q; and

Py =Cov(qi,qj ) (viavjp )" ?; —1<p; <1; p; is a dimensionless constant
that measures the linear interdependence or proportionality between g;and ¢ ;

pij =0 if giand g; are independent, but the converse is not necessarily true
(Trivedi, 2002).

m Median (50th percentile) of a log-normally distributed variable.

F Error factor (range factor) of a log-normally distributed variable; F =95
percentile/50th percentile = 50th percentile/5th percentile,

A& Mean and standard deviation of the natural logarithm of a log-normally
distributed variable; A =f¢n(m); E=4¢n(F)/1.645.

C(n,i) The combinatorial (binomial) coefficient (n choose i) = the number of ways of

choosing i objects out of n objects without order or replacement (0<i < n),

3. Important Security Issues

Study of the security of modern computer systems deals with many important entities
such as basic breach events, security measures and undesirable top events. Table 1
presents our preliminary or first-cut treatment of this sophisticated subject, by citing
examples of various types of security exposure in a "typical" computer system. The
indices or keys of the columns of Table | are indicator variables for certain undesired top
events that we thought are of interest (to which the reader may add others of his own).
These are :

Y, = Performance degradation,

Y, = Inability to Process, _

Y, = Loss of data (files, records, programs),

Y, = Unauthorized/Inadvertent modification of data,
Y, = Unauthorized reading or copying of data,

Y, = Permanent Hardware malfunction.

The indices or keys of the rows i are important basic breach events B,. An entry a

at row { and column j of Table I means that the probability of occurrence of the event
B, (which is the basic event B, pertaining to the top event Y)) is 107 Blank positions
(in which no entries are given) indicate that the event B, is virtually impossible, i.e. of

negligible probability. The basic idea of Table | is borrowed from Martin (1973). In fact,
the top rows in Table | summarize details given in Table 2.1, pp. 12-13 by that author.
The bottom rows of Table 1 add breach events due to malicious codes or programs
(Stallings, 2003; Alayed et al., 2002; Salah, et al, 2002; Gollmann, 2000). A word of
caution is in order. The probabilities entered in Table 1 are very rough estimates that may
be easily disputed and that have to be refined through adequate measurement techniques
applied to specific systems. To reflect the fact that these probabilities suffer from large
uncertainties (that may be severe enough to produce a variability of one order of
magnitude), we consider the entries not to represent deterministic variables but rather to
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represent some central measures of random variables. We further assume these entries to
represent the medians of the corresponding variables, which we also assume to have a log-
normal distribution (truncated to the [0.0, 1.0] interval), with an error factor F= 10 (Rushdi
and Kafrawy, 1988).

Table |. Examples of types of security exposure (an entry in the table is a rough estimate of the negative of
log,, of the pertinent probability of occurrence in one day).

T; Y| Y, Y, Y 4
B;
Catastrophes (Fire, flood, earthquake, war, ... ) 4 4 4 - - 4
Hardware/Software failures 1 2 3 3 - 3
Human Carelessness 3 3 2 0 4 3
Malicious damage (looting, sabotage) 3 3 3 3 3 3
Fraud and Embezzlement - - 3 2 2 -
Industrial espionage - - - - 3 -
Employee betrayal of employer - - - - 3 _
Malicious Programs:
Viruses 2 2 2 2 2 3
Worms 3 3 3 3 3 -
Bacteria 3 3 - - - -
Trojan horses 3 2 3 3 3 -
Logic Bombs - 3 3 3 - -
Trapdoors - - 4 4 4 -
Table 2. Parameters of the basic-event probabilities for top event Y .
i m, F, S Vi Via
: 107 | 10 ] 13997478 x 10~ 26635156 x 1077 4.3234997
25 1 10 10 ] 13997478 x 10 "2.6635156 x10° 4.3234997

The fault-tree modeling of computer security to be pursued in the following sections
cannot be completed without an appropriate understanding of the major security safeguards
or measures usually taken in modern systems, since these (in addition to the breach events)
are potential candidates as inputs in fault-tree models. Due to space limitations, we refrain
from discussing the issue of security safeguards here and refer the reader to some of the
texts on this topic (Anderson, 2001; Tanenbaum, 2001; Kaufman et al., 2002).

4. Construction of Fault Trees

Fault-tree analysis is a top-down deductive analysis structured in terms of events (or
indicator variables thereof) rather than components. The perspective is on faults or failures
rather than successes since a failure is usually easier to define than a non-failure, and there
may be far fewer ways in which a failure can occur, as opposed to the numerous ways in
which non-failure can occur (Ebeling, 1997). The focus is usually on a significant failure
or a catastrophic or undesirable event, which is referred to as the top event since it appears
at the top of the fault tree. In construction of a fault tree, logic gates are used to relate the
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input or basic events and the intermediate events to the top event. Note that a logic gate
gives a qualitative description of the causal relationship between its inputs and its output.
For example, the output event of an AND gate occurs iff all its input events occur, while
the output of an OR gate is caused to occur if at least one of its inputs occurs. Therefore ,
the indicator variable for the output of an AND (OR) gate is obtained simply by ANDing
(ORing) the indicator variables for its inputs. Detailed studies of the construction or
synthesis of fault trees is available (Henley & Kumamoto, 1981; Henley & Kumamoto,
1992; Kumamoto, 1993; Aboun-Nour, 1999). A few examples are now presented to
demonstrate the construction of fault trees in the computer security arena.

Example 4.1

The situation depicted by Table 1 can be modeled by a multitude of fault trees. Each
of the top events Y;, 1< j<6is the output of a fault tree consisting of a single OR gate,

the input of which are the pertinent basic events, i.e., those events having contribution to
the top event.

Example 4.2

A simple fault-tree model for a message protected by a combination of
steganography and cryptography (Stallings, 2003) may consist of a single AND gate with
output S and inputs ?l,YZ and X 3, where:

S = The intruder gains access to the plaintext sent,

X = The intruder manages to intercept the overall message and acquires its
ciphertext,

X, = The intruder detects the existence of a secret message despite its concealment
within the overall message through steganography, -

X3 = The intruder succeeds in his cryptanalysis attack and breaks the encryption
algorithm.

Example 4.3

Figure 1 shows a fault tree that models system behavior under the attack of a virus
that takes place when a certain threshold time is reached. The indicator variable for the top

eventis § = System breach under the virus attack.

While the basic events are :

X = The system is not protected by an antivirus package,

X. = The dictionary of an added antivirus package lacks a definition of the signature
for pertinent virus ,

X3 = A virus contamination occurs,

X4+ = The threshold time is reached,
X, = The system is on at the threshold time.

And the corresponding intermediate events are :
Z, = The system is unaware of the virus signature,
2
Zs

The virus spreads in the system unopposed,

The threshold time is reached while power is on.
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Fig. 1. A fault tree modeling a system breach under virus attack.
5. On the Analysis of Fault Trees

A fault tree is a logical formulation that can be used to express the top event as a
logical function of basic events. Noting that the algebra of events (set algebra) is
isomorphic to the bivalent or 2-valued Boolean algebra (switching algebra), we may
choose to employ this latter type of algebra by considering the inputs and output of a fault
tree as indicator variables of the respective events. Hence, the fault tree is to produce a
switching or Boolean function: for the indicator variable of the top event in terms of the
indicator variables of the basic events. Now, it is necessary to move from the Boolean
domain to the probability domain so as to obtain the top-event probability as a function of
basic-event probabilities. Many algorithms have emerged for converting the switching
(Boolean) expression for the indicator variable of the top event into a probability-ready
expression (PRE) i.e., into an expression that is directly convertible, on a one-to-one basis,
to a probability expression. Note that in a PRE

(a) all ORed terms/(products) are disjoint, and

(b) all ANDed alterms (sums) are statistically independent.

The conversion from a PRE to a probability expression is trivially achieved by
replacing Boolean variables by their expectations, AND operations by multiplications, and
OR operations by additions (Bennetts, 1975; Rushdi & Abdul-Ghani, 1993). In the
following, we give a brief classification of the available algorithms for converting a
general switching expression into a PRE.

5.1 Orthogonalization (Disjointness) Algorithms
These algorithms start with a sum-of-products (s-o-p) expression for a switching
function and orthogonalize it by making all its terms mutually disjoint. The basic internal
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step for such algorithms is to consider a sum (7, v T}) of the two terms 7, and T, that are
nondisjoint and are such that neither of them subsumes the other. The term T, is disjointed

with (made orthogonal to) the term 7, by the relation
LT, =T, vTi(y y,...y,)

=T, VTj(Y1VY1sz Yi¥a¥a Voo VY VoY e YY) (1

where Y ={y,, y,,y;,...,y,} is the set of literals that appear in 7, and not appear in T;.

Note that T is replaced by e terms that are disjoint among themselves beside being
disjoint with 7;. In the limiting case of e=0 (Y =¢), T, subsumes T, and is absorbed
by it, i.e.,

TvT, =T vT(0)=T. , 2)

The seminal work on orthogonalization (disjointness) is due to Abraham (1979) and
to Dotson and Gobian (1979). Visual insight into the process of disjointness can be
obtained through the use of logic aids such as the Karnaugh map (Rushdi, 1983(a)). More
recent work on orthogonalization involves multiple-variable inversion techniques
(Veeraraghavan & Trivedi, 1993) and shellability (Crama & Hammer, 2002).

5.2 Algorithms Based Primarily on Statistical Independence

Orthogonalization algorithms make a natural utilization of the statistical
independence of basic events, when such independence can be assumed. There are other
algorithms (Rushdi & Goda, 1985; Rushdi & Abdul-Ghani, 1993) that try to make a more
direct use of statistical independence, not only through preserving it when it exists, but
also by deliberately making it more manifestable through appropriate operations. For
example, it is always possible to handle the complement of an expression instead of the
expression itself. If one uses the De Morgan identity

(vX)=AX (3)

then statistical independence can be utilized in the ANDed form that appears in the right
hand side (RHS) of (3).

5.3 Expansion or Factoring Algorithms

The most powerful class of algorithms producing PREs are algorithms based on
repeated use of the Boole-Shannon expansion (Rushdi, 1983(a); Rushdi & Goda, 1985) in
which a switching expression is expanded about one of its variables in the form

SX)=(X i AS(X | Xi=1)vX, ASX | X, =0)) 4)

Note that (4) represents a good step towards creating a PRE; the two terms in the
RHS of (4) are disjoint, and each of them is an ANDing of statistically independent entities
(under the assumption that X consists of statistically independent components). Many
authors apply (4) directly in the probability domain, in which case it is called the factoring
theorem (Page & Perry, 1989) which is simply a version of the total probability theorem,
namely
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Q@) =q Qql1)+1-g)0Q(q|0) (5)
where Q(q| j.), j=0, 1 , is the function Q( q )with g; set to j while the rest of the

elements of ¢ are left intact. Once a symbolic expression of the top-event probability as a

function of basic-event probability is obtained, it can be used to derive important measures
for the various basic events. One such measure is (Henley & Kumamoto, 1992)

1;=(00/9q: )=Q(q|1:)-Q(q|0:) (6)
The variable /; represents the importance of basic event i. An importance ranking of

the basic events is obtained by the following rule: if [, >/, then event i is ranked as

more important (from the specific top event point of view) than event j.

Example 5.1 (Example 4.3 revisited)

The indicator variable S of the top event for the fault tree in Fig. 1 can be expressed
in terms of the basic events as

E:(;lv;z) ;3}4)(5 (7)

Henceforth, the basic events are assumed to be statistically independent. The expression
(7) for S can be rewritten in the disjoint s-o-p form,

S=(X/vX:X)X: X+ X5 , (8)
which corresponds to the following expression for the top-event probability

0=(9,%+p,49,)9,9,p; 9)

Alternatively, the complement of (7) 1s written as

S:XIXZ(X3VX4VX5)
=X1X2(X3VX3(X4VX4X5)) (10)
which results in the following expression for the top-event probability
Q=1=pp,(p;+q,(;+q.45)) (1)

6. Uncertainty Relations

In reliability analysis of computer systems, models such as reliability block diagrams,
fault trees, Markov chains and stochastic Petri nets are built to predict the reliability of the
system (Ebeling, 1997; Trivedi, 2002). The parameters in these models are usually
obtained from field data, data from systems with similar functionality, and even by expert
guessing, and hence are bound to suffer from considerable uncertainty (Yin et al., 2001).
The uncertainty problem pertaining to fault-tree outputs has an analytic doubly-stochastic
treatment via the method of moments (Rushdi, 1985; Rushdi and Kafrawy, 1988; Kafrawy
and Rushdi, 1990). This method of moments utilizes the multiaffine nature (Rushdi,
1983(b)) of the top-event probability as a function of the basic-event probabilities. The
basic results of the method of moments, which have been extensively verified through
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comparison with results obtained via other methods including Monte Carlo simulations,

can be summarized as follows.

The mean or expected value of the top-event probability Q is

:Q(V1)+Z ZCU‘]U+Z chgk ‘]uk+ ACy T,

ISi<j<n I<i< j<k<n

while its variance (measure of uncertainty) is
ZC2
+Z Z [2C, CJ,+Co (1 =T0)] + 22 > 2 DCCu( 1)

i
23 ¥ Yo e,e2Ey ¥ oYec,c,
+Zl<.;«<nzcﬂk”w Vi) # ot Coy e ~Ti2n)

(12)

Ju)

(13)

which reduce to the following expressions when the components of ¢ are statistically

independent

=00,
ZC v,2+z Z C v,2v12+z Z ZCU,‘vlzvj,vk2
I<i<j<n I<i<j<n

.+ Cl 2VaV v,
The coefficients that appear in (12) - (15) are given by
C; =(00/0q,)0=y, = Qv/| 1) = O(v,|0)
C; =(9°Q/3q,0q ),

= Qv [1,1)=Q(v,[0,,1) = (v [1,,0 )+ (v [0,,0,)

Ciy = (a3Q/aqiaqj'aqk Vg=v,
= Q|10 = Q1500 = Qv |1,0,,1) + Q(v,)0,0,.1,)

= QU |1 11,00 + Q,[0,1,,0) + Qv [1,0,,0,) = 0(v,[0,0,,0,) etc.

The expressions above for 4 and 4 are exact closed-form formulas.

(14)

(15)

(16)

(7

(18)
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Example 6.1
Consider a fault tree consisting of a single AND gate such as the one in Example 4.2.
In this case, the top-event probability is a product of the basic-event probabilities

0=1Ilg, (19)

If the basic-event probabilities are assumed to be statistically independent, then the
mean and variance of the top-event probability are obtained from (14) and (15) as

n
k=1, 20
3 (u,/ i > (u/ 2
#2 E] Hi/ V) Ve 1<iSjen 1 Vi) " Viz Vg
5 n
+ > . Z > (u,/ vy Vi) Va Vip Vgt .+ T1 v, 2D
I<i< j<k<n =]

Example 6.2
Consider a fault tree consisting of a single OR gate (such as any of the trees referred
to in Example 4.1). By virtue of (3), the top event probability is given by

0=1-T1p =1-T1U~q) (22)

Again, the basic-event probabilities are assumed to be statistically independent, so that the
mean and variance of the top-event probability become

w=1= T (1-v,) (23)
My = i (=u)/ T=v)? vy + ZZ((I_ﬂ/j/(1_":‘/)(1_",'/))2 Vi Vj2
i=1 1Si<j<n
+ 3 Y YW=/ =y =V, XT=v ) Vg iy Vi + e H]v,g (24)
I<i< j<k<n . i=

Note that when v, << 1,v,, << 1,V i, then (23) and (24) simplify to

H "’ZV.‘/ (25)
i=1

Hy = ZV i2 (26)
i=1

Example 6.3

Consider a fault tree in which the top event occurs iff at least k of its n basic events
occur. This fault tree simulates a k-out-of-n:F system, i.e., a system that fails iff at least k
of its n components fail. If the basic events are assumed to have identical probabilities, the
top-event probability is given by
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Q@ =) C(n,i)g'(1-¢)""
i=k

:Zn:(—l)"“kC(m—l,k—l)C(n,m)q"‘ (27)
m=k

Hence, Q is a polynomial function of a single-variable q, and a direct application of
the expectation operator to its Taylor expansion leads to the following expression for

E{Q}.
= ]
K =Q(v,)+§;(a’Q/aq’)w,V, (28)

Similarly, the variance of Q is easily obtained as

1, = 00RY, v, +100RR@* 0B, v,

1 1 3 3
+[Z(82Q@q2)2 +§(8Q@q)(a 0/9q )]q=v, v, +.. | (29)

Expressions (29) and (30) can also be obtained from (12) and (13), if Q is expressed as a
function of distinct variables g (Rushdi; 1993),"and later all components of q are set equal

to a single value q.

7. A Sample Numerical Example

Consider the top event Y in Table 1. We recall from Example 4.1 that Y, is the

output of a fault tree consisting of a single OR-gate of 5 inputs X, 1<i<5. The mean
and variance of the top-event probability are given by equations (25) and (26) in Example
6.2. The basic-event probabilities are of a log-normal distribution of medians
10™,107,107,107,and 107 respectively and of a common error factor F= 10. For such
small medians, there is no need to iyorry about the tail of the distribution extending out to
infinity, and the log-normal distribution is effectively equivalent to a truncated distribution,
i.e., to a distribution bounded witlfin the [0:0, 1.0] interval (Rushdi & Kafrawy, 1988).
Given the median m and error factor F of a log-normally distributed variable X . then the
mean v, and variance v, of X are

v, =exp( A+E/2) =m exp( £*/2) (30)
v, =V (exp(€’)-1) (31)

where ¢ =(fn(F)/1.645) is the standard deviation for /n X (See Appendix A). With the

aid of (30), (31) we complete the list of pertinent parameters of the basic-event
probabilities as shown in Table 2. The data of Table 2 are now substituted in (25) and (26)
to produce the mean and variance of the top-event probability as

4, = 1.0920414 x 107,
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U, =1.7337234 x 10~

It is desirable to make some estimate of the potential cost of the damage that might
be done by the top event Y. If the system vulnerability to Y, is estimated to be say SR

10,000, then a quantitative rating for the system exposure to Y, is obtained by multiplying

the vulnerability by g, to obtain the numerical value of 109.2 SR/day. Can we multiply

this number by 365 to obtain the probable average damage per year? The answer is
generally no, since the pertinent probabilities are not generally additive, i.e., the per-year
probability is not necessarily 365 times the per-day probability.

The importance of the basic event i has a mean value of

<I.>=(I-u)/U=-v,) (32)

and hence we can see that the four basic events 2,3,4 and 5 are of equal importance and are
each more important than the basic event 1.

8. Conclusion

A preliminary work on the problem of fault-tree modeling of computer system
security is presented. This work is to be more perfected by employing rigorous
measurement and statistical techniques in assessing basic-event probabilities for specific
computer systems. It is expected that these probabilities will vary significantly according
to many factors such as the size, make, model, uses and geographical location of the
computer and whether it is internetworked or not. Another important area of future work is
to consider more sophisticated fault-tree models that can describe more detailed scenarios
in which attention is not restricted to breaches, threats or attacks but also involves a
consideration of safeguards or protective measures.
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Appendix A: On the Lognormal Distribution

The lognormal probability density function (PDF) is given by
fr () =exp(—((Un(x) - A/ Y2122 Ex, x20,

Hx(X)=0, x<0 (A.1)
where A and ¢ are given by

A=E{/n(X)} ‘ (A.2)

£ = VAR {/n (X)) (A.3)

which means that A and £ are the mean and standard deviation of the natural logarithm of

the lognornally distributed variable X. They are expressed in terms of the median (50"
percentile) m and the error factor F of the lognormal distribution via:

A =/¢n(m) (A4)
E= tn(F)/ 1.645 (A.5)

where F is the ratio of the 95th percentile to the median, which also equals the ratio of the
median to the 5" percentile.

The moments about the origin and the central moments for the lognormal PDF are given
by
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t,=E{(X'} = exp(AL+&E20°12), ¢ =1,2,.. (A.6)

v, =E{X"} = E{(X -1)}, £=3,4,..

Vzm : j ¢ (= jiXt—j =1
where
w=exp (§*) (A.8)
v,=0(w-1)exp (24) (A9)

Correspondingly, the mean and the lower-order central moments for the lognormal PDF
are given by

v,=exp(d + £/ 2) =mexp(£2/2) (A.10)
v,=v}(exp (£)-1) (A.11)
vy=vy? (exp(&h) - Y (exp (&) + 2) (A.12)
v,=v2(exp(4 &%) +2exp B3EF) +3exp(2£°) -3) (A.13)

The lognormal PDF is not uniquely determined by the infinite sequence of its
moments {¢, }. If the lognormal PDF (A.1) is multiplied by the factor

1+ £sin 2 7 k (fn(x) - 1) / &) (A.14)

the resulting PDF possesses the same moments as the lognormal PDF.
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