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Abstract

In this thesis, we propose and analyze a class of within-host Chikungunya virus
(CHIKV) infection models with antibody immune response. These models are
given by either system of ordinary differential equations (ODESs) or by system of
delay differential equations (DDEs). We carry out the following: (i) We consider
different forms of incidence rate of infection such as saturated incidence,
Beddington-DeAngelis incidence and general incidence. (ii) Actually, there exists
a latent period between the moment when the CHIKYV contacts the uninfected cells
and the moment when the infected cells become active to produce infectious
CHIKYV particles. We incorporate this latent period into the models by two
methods, the first method is to add another state variable to the models which
represents the population of the latently infected cells (which contains the CHIKV
but not producing it), the second method is to present the CHIKV infection models
as a system of delay differential equations (DDESs). The time delay is given by
discrete time or distributed. We show that the delay plays the same role of antiviral
treatment. (iii) Since the immune response plays an important role in controlling
the CHIKYV infection, therefore, we consider the adaptive immune response (CTL
Immune response and antibody immune response). (iv) Since the CHIKYV attacks
many types of target cells, therefore we assume that the CHIKV infects n classes of
target cells (i.e multitarget cells).

For all models, we show that our models are biologically feasible. We study the
nonnegativity and boundedness of the solutions of those models. Further, we
derive the threshold parameter, that is the basic reproduction number RO; which
determines the existence and stability behavior of the steady states of the models.
We establish a set of conditions on the general functions which are sufficient to



prove the existence and global stability of the steady states of the models. The
global stability of the models is established by constructing suitable Lyapunov
functionals and applying LaSalle's invariance principle. We prove that if RO < 1,
then the CHIKV-free steady state is globally asymptotically stable (GAS), and if
RO > 1, then the endemic steady state exists and it is GAS. We present some
examples and perform numerical simulations in order to illustrate the dynamical
behavior. We show that numerical results are consistent with the theoretical results.
More accurate treatments can be designed from the results of our proposed models.
The outcomes of this thesis are published in several ISI International Journals.



