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ABSTRACT 
Quad trees and dyadic trees are hierarchical data structures that are used to represent spatial data or images. With a 
collection of images, a tree-indexed Markov chain can be generated by letting the transition probabilities from one level to 
the next level be estimated by the empirical transition probabilities. Depending on the original collection of images various 
goals may be achieved. One may for instance synthesize new structures from given structures. Another example is the 
modeling of heterogeneous structures at multi-scales for geological characterization. 
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1. INTRODUCTION 

Quad trees and dyadic trees are hierarchical data structures used to represent spatial data or images. They are based on a 
principle of recursive decomposition of an image into its corresponding scales. Each level in the hierarchical structure 
corresponds to a particular scale and each node at a given scale is connected to a node at the preceding coarser scale and to 
several descendent nodes at the next finer scale. This type of representation is commonly used in many fields such as 
computer science and data compression 4. The structure of the paper will be as follows. First an introduction to the quad 
trees are given followed by an introduction to the tree-indexed Markov chains on quad trees. Some simulations are presented 
using various models on the quad trees. Then an introduction to the dyadic trees is given with some simulations and 
comparisons with the quad tree simulations.   

2. QUAD TREES 
A two-dimensional image can be represented by K scales (levels). At a particular level, LM, such that 0≤ M ≤ K, the 
corresponding number of nodes (pixels) at this scale is 2M�2M. There is a factor 4 between the number of grid cells at each 
scale and the previous coarser one. This yields the quad tree structure over all scales of an image. The procedure is simply 
based on the successive subdivision of an image into four equal-sized quadrants. In case of binary images, which contains 
either black (B) or white (W) colors, if the image does not consist entirely of blacks or entirely whites, it is subdivided into 
quadrants colored gray (G), sub-quadrants, and so on, until quadrants are obtained that consist entirely of blacks or whites. 
Figure 1 shows a resolution of an image by the quad tree. In general, a tree is a connected graph without loops or cycles and 
with a distinguished vertex.  The vertex that is the first node in the tree is called the “ root”. It is denoted by the symbol � 
and corresponds to the entire image (M=0). The descendents of a node are the“ children”. Each child represents a quadrant 
of the region that is represented by its father. 
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Figure 1.  Scale resolution of an image with 32 by 32 pixels (K=5, N=32, left top of the figure is the image, bottom row is scales M = 0, 
1, 2, 3, 4 and 5 respectively from left to right)  
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3. TREE-INDEXED MARKOV CHAINS 
Images can be randomized by randomly labeling the corresponding quad trees. A natural way to accomplish this is by using 
a Markov chain. A Markov chain on a tree describes a scale-to-scale transition. Formally this should be called a tree-indexed 
Markov chain. For vertices u and v on the tree, one can write u � v if u is on the unique path from v to the root �. The set of 
vertices of the tree will be denoted by T. For any vertex w in T which is not the root �, we denote the father of w by �w, i.e., 
the unique vertex connected to w with �w � w. A tree-indexed Markov chain (indexed by a tree T) is a collection {Xw: w�T} 
of random variables taking values in a finite set � of states, satisfying the (tree) Markov property (see 1). Let w �T, w ��, 
and let v = �w. We call 
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the initial distribution and the transition probabilities of the chain.  
In Dekking et al.1 it was shown that for a tree-indexed Markov chain XT, and for v�T, the probability P(Xv = �) can be 
expressed in the initial distribution and transition probabilities,  proceeding just as in the case of ordinary Markov chains. To 
be explicit: for each v �T there is a unique path of vertices �, v1, v2,…, vn-1, v from the root  � to v and  
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For an arbitrary T we define its levels LM = LM(T), by L0 ={�} and LM+1 ={w�T: �w� LM} for M =0,1,2,…,K. If  w�LM we 
write Lev (w) = M. With an 2K�2K pixels we associate the 4-ary tree T4(K), i.e., all level K vertices do not have children, and 
for each v with Lev(v)<K one has #{w: �w =v}=4 (see Figure 2 ). 
To randomize the quad tree of a 2K�2K pixels image by a T4(K)–indexed Markov chain we already saw that we should have a 
state space � = {B, W, G} representing the colors white, black and gray. Furthermore it is required that pv,w (W, W)= pv,w (B, 
B) = 1, for all  T4(K) \{�}, v=�w. This corresponds to the fact that the algorithm stops when the pixels in a sub-square are 
either all white or all black. With this definition the tree itself is not image dependent: the randomness resides in the 
transitions from G to B, W and G. Although the whole idea of a tree-indexed Markov chain on quad tree is conceptually 
simple and clear, some care has to be taken. The problem is that it is possible (since children do not “know” each others 
colors) that a “gray” father has four black children or four white children, which in violation with the definition of the father 
being in a state labeled “gray”. The way out of this problem is to interpret quadruples of vertices having the same father as a 
single vertex. This gives a T4(K-1)–indexed Markov chain with state space �4 = {B, W, G}4 and transition probabilities, 
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with �wi = vj  for some j and �v1  =�v2 =�v3 =�v4. This model is also known as the 4-4 model. Other variations of the so-
called 1-1 model will be discussed in the next sections. 

3.1 Models on the Quad Trees 
There are various models can be described on the quad tree. The first model is the 1-1 model, which does not fit into the 
framework of the tree-indexed Markov chain as explained above. The second model is the 1-4 model (which is a particular 
case of the 4-4 model above), where one looks at the joint distribution of the states in the four children. This means that one 
looks at how gray at a certain level in the tree is going to a combination of black, white and gray at the next level in a 
specific order. For example, in Figure 3 (left image) one can notice that G at level M=0 is going to WBGB at the next level 
M=1 with this ordering from top to bottom and from left to right (i.e. NW, SW, NE, SE). This model guarantees that G goes 
always to a combination of black and white and not to pure black or to pure white. 
 
 
 
 
 
 
 



 
 

Root

u

w1 w2 w3 w4

v  

B

to
 c

oa
rs

er
 s

ca
le

to
 fi

ne
r s

ca
le

M-Level (scale)

(M-1)-Level (scale)

0-Level (scale)

K-Level (scale)

T

���

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Definition of the scale structure of the quad tree and the symbols used in the text (each node in the tree has four 
rays). 

3.2 Estimation of the Empirical Transition Probabilities from Data 
The transition probabilities, that are required to perform simulations, are estimated from the data. Suppose there are Mtot 
images and the corresponding tree of each image is built. To be more precise, these Mtot data trees are realizations of a tree-
indexed Markov chain XT with transition probabilities pv,w (�, �) for w�T and �, � � �. Here it is always assumed that v= 

�w. Let w�T and 1 � m � Mtot the color of vertex w in the mth data tree be denoted by Xw
m. One can define for �, � � �, 

w�T 
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Furthermore, one can define the empirical transition probabilities p�

v,w (�, �) by  
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and the initial empirical probabilities are estimated by, 
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Dekking et al.1 showed that these empirical transition probabilities p�

v,w (�, �) and initial probabilities p�

�(�) are in some 

sense the “right” estimators for the probabilities pv,w (�, �) and p�(�) respectively. The main theorem1 shows that the 

empirical transition and initial probabilities are the maximum likelihood estimators for pv,w (�, �) and p�(�) respectively. 
Figure 3 shows, for a simple example, how these empirical probabilities are estimated from a given data set. Firstly, for each 
given image a tree is built based on a scaling by a factor four until the pixel level is reached. Secondly, in each branch in the 
tree one looks at all possible transition from the given images in the data. For instance, in Figure 3, the first level is gray for 
all the given images. In the second level, the square is divided into four small sub-squares with WBGB in the first left image, 
GBGG in the middle image and WBGG in the right image. The transition probability from G at level M=0 to WBGB, GBGG 
or WBGG at level M=1is 1/3. One property on that tree is the transition from B at any level will go to BBBB at the next level 
with probability one. Similarly, we have a probability one for a transition from W to WWWW. 

Transition Matrix Over Scales:

Scale M = 0 ----> 1

         WBGB         GBGG        WBGG        
G         1/3              1/3             1/3

Scale M = 1 ----> 2

         WBWB         BBBB        WWWW                                WBWB        BBBB        WWWW                   
G           1                  0                  0                             G            1                0                  0      
B           0                  1                  0                              B            0                1                  0 
W          0                  0                  1                             
_________________________________________________________________________ 

                               BBBB       WWWW                                  BWBW        BBBB         BBWW
                                                                                      G          1/2                 0              1/2      
B                                1                 0                                B           0                   1                 0
W                               0                 1                              
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No. Cells  N = 1
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Figure 3. Sample images and calculation of their empirical transition probabilies over the various scales in case of quad tree 
representation (1-4 model). 

3.3 Test Examples of the Quad Tree (1-4 Model) 
The first test is a simulation of a layered system. These tests do not use the full power of the tree-indexed Markov chain 
formalism but make the reader understand how the randomness works in the method. The data of this test is given in Figure 
4 (top row, first two images from the left). In this example, the input data are two possible layered sequences. One of the 
data starts from the top with a black layer and the other starts on top with a white layer. The tree representation of this 
example is gray at all levels until scale M=6 which is the image resolution. At the resolution scale of the image there is either 
G goes to BWBW or WBWB. Each of these combinations has a probability 0.5. The simulation procedure switches between 
these two possible combinations and produces the realizations in the bottom row of Figure 4 (first two images). The second 
test is a simulation of a checkerboard system. The data for such test is given in the top row of Figure 4 (third and fourth 
images). The simulation results, shown in Figure 4 bottom row, produce some correlation in the system that is not present in 
the original data. The reason is the following. The tree distribution of this type of data is gray at all levels up to the 
resolution scale of the image where black and white appeared. The transition in this example is that G is going to WBBW or 
BWWB. Then the simulation switches between these two possibilities each with a probability 0.5. Correlation is produced in 



the simulations due to the fact that the procedure is sampling from the two data images. The procedure generates the 
combination BWWB as a neighbor of the combination WBBW, which leads to some short range correlation.  
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Figure 4. Test Examples of the quad tree: the top row consists of the data, the bottom row consists of the simulations.    Left 
part: layered system, right part: checkerboard system (image resolution K=6, N=64). 

 
4. SYNTHETIC DATA USED IN THE SIMULATIONS 

The four authors were cooperating in a project to model subsurface heterogeneity at various scales. In this context the 
coupled Markov chain model, developed by Elfeki 2,3 was used to generate synthetic data for the tree-indexed Markov chain 
technique. A brief description of the coupled Markov chain model is given below. The coupled Markov chain model is a 
stochastic technique that couples two one-dimensional Markov chains. The first one is used to describe the sequence of 
variation in states in the vertical direction and the second chain describes the sequence of variation in the horizontal 
direction. The two chains are coupled in the sense that, a state of a cell in the domain is dependent on the state of two cells, 
the one on top and the other on the left of the current cell. This dependence is described in terms of transition probabilities 
from the two chains. Some examples of input data that is generated by the coupled Markov Chain model are shown in the 
following sections. 

Figure 5 (left most column) shows two images that are generated by the coupled Markov chain model. The input parameters 
(transition probabilities) for generating the bottom image in the first column (from the left) are presented in Table 1 (for the 
large-scale structure). The elements of the transition probability matrix for the horizontal direction, pH

ij which means the 
probability of a given state, i, is following another state, j, are given in the tables (e.g. in Table 1 pH

BB =0.98 and pH
BW =0.02 

and so on.). A similar transition probability matrix is used in the vertical direction with pV
ij (e.g. in Table 1 pV

BB =0.80 and 
pV

BW =0.20 and so on.). 
    
Table 1. Input parameters to generate synthetic data by the coupled Markov chain model (large-scale structure in Figure 5) 

for the quad tree simulation. 

Horizontal transition probability matrix                                                                            Vertical transition probability matrix 

       State    B        W                                                                                                                               State   B       W 



         B   0.98     0.02                                                                                                                                B     0.80   0.20 

         W  0.02      0.98                                                                                                                               W    0.20   0.80 

5. SIMULATIONS WITH THE QUAD TREE (1-4 MODEL) 
One of the applications of the tree-indexed Markov chain is to handle data at various scales and merge these data in a 
statistical sense to produce many realizations that possesses information from the given data.  

5.1 Simulations with Original and Smoothed Quad Tree 
An example of merging two different structures is presented. A large-scale tilted layered system (Figure 5, left bottom 
image) and a fine-scale structure (Figure 5 left column top image) are considered. The simulations are performed with the 
original quad tree (described in section 2) and with what is called a smoothed quad tree. The smoothed quad tree is similar to 
the original quad tree except that it tries to smooth noisy data. The reason to do so is to let the large-scale features to be more 
pronounced in the simulations. The original idea of the quad tree is that if a square contains any percentage of black and 
white it is considered to be gray. While in the smoothed quad tree, the idea simply is that if a square contains a higher 
percentage of black than white then it is considered to be black and vice versa. Two degrees of smoothing are considered. 
These degrees are the following: 

1. Degree of smoothing no. 1: It is considered that, if a square contains more than 87.5% W is considered to be W and if 
the square contains more that 87.5% B, it is considered to be B.  

2. Degree of smoothing no. 2: It is considered that, if a square contains more than 75% W is considered to be W and if the 
square contains more that 75% B, it is considered to be B.  

According to these degrees of smoothing, simulations have been performed and compared with original quad tree 
simulations. The simulation with original quad tree is displayed in the Figure 5 (2nd column from the left). The simulations 
with smoothing effects are displayed in the third and right columns of Figure 5 for the two degrees of smoothing that are 
mentioned above. One would recognize that the simulations for the degree of smoothing no.1 show no significant difference 
between this case and the simulation by the original quad tree. The reason is that the degree of smoothing in case no.1 is 
relatively small that has no significant influence. However, in case of smoothing no.2 (Figure 5 right column) the simulations 
show more black and white spots than in the simulations with the original quad tree and case no.1. That means the smoothing 
effect is stronger in case no. 2. 
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Figure 5. Merging two different heterogenous structures by quad tree with different degrees of smoothing. Data: left most 
column, no-smoothing simulation (second coulmn), smoothing simulation with more than 87.5%W is white (third column), 
smoothing simulation with more than 75%W is white right column.  (Image resolution K=8, N=256). 

 



 
 
 

6. DYADIC TREES 
The so-called “Dyadic trees” are a variation on the quad trees used in the previous sections. In the dyadic tree, there is a 
factor of 2 between any scale and the previous coarser one. In this representation any node in the tree has two descendent 
nodes at the next finer scale and one parent node at the preceding coarser scale. The tree is used to perform separately 
scaling in the vertical direction (V-scaling) and to perform scaling in the horizontal direction (H-scaling). Although there are 
many other possibilities we concentrate here on a particular order in which the vertical and horizontal scaling are performed.  
Firstly, the image is decomposed into its corresponding scales in the vertical direction by a dyadic tree with Ky levels until 
the pixel level in the vertical direction is reached (we call this the pixel line). Secondly the features that do not appear in the 
vertical direction will appear when the scaling in the horizontal direction is performed. The strips that are appear in a gray 
color are scaled horizontally in Kx steps in the horizontal direction until the pixel level is reached. An image that is scaled by 
the dyadic tree is shown in Figure 6. In the language of section 3 a tree-indexed Markov chain on a dyadic tree is simply a 2-
ary tree T2(Kx+Ky). Mathematically speaking, there is no difference in properties between quad trees and dyadic trees. In 
particular the empirical transition and initial probabilities are the maximum likelihood estimators for pv,w (�, �) and p�(�) 
respectively.  

 

Horizontal scaling

Vertical scaling

 
Figure 6. Scale decomposition of an image by the dyadic tree with 8 by 8 pixels (top left is the image, second row is the 
vertical scaling My=0, 1, 2 at Mx=0 and bottom row is the horizontal scaling Mx=1, 2.  

6.1 Models on the Dyadic Tree 
The first model is called 1-2V 1-2H model. It is similar to what is considered earlier in the quad tree (1-4 model).  The 1-2V 
1-2H model means: division of the image into two horizontal strips until the pixel line is reached in the vertical direction. 
Then each strip is divided into two cells in the horizontal direction until the pixel line is reached. In Figure 7 (left image), at 
the vertical scale My=0 and the horizontal Mx=0 the color is G. This node in the tree goes to two horizontal strips at the next 
level (My=1 and Mx=0) with colors GB from top to bottom and so on. Then the procedure stops in that direction because the 
pixel line is reached. The scaling procedure starts in the horizontal direction. The top white W strip goes to two white 
children WW, while the next gray G strip goes to WB. 

6.2 Test Cases of the Dyadic Tree 
The first test is simulation of a layered system. This is similar to what has been performed earlier in the quad tree. Figure 8 
(left part) first and second rows show the data the results respectively. The simulation results are quite different from the 
quad tree case (see Figure 4). In this situation the tree will show G at all scales up to the pixel level in the vertical direction 
where the strips will be either B or W. From the two image data set G goes either to WB or BW with probability 0.5. The 
combination WB or BW will be repeated in the simulations and sometimes WB will come to be in contact with BW. The 
horizontal scaling does not play a role in this particular test because all the colors B or W will already have appeared in the 
vertical scaling. Another test is also made to simulate a checkerboard system. Figure 8 (right part) shows data and results of 



this test. The simulation results produce some correlation in the system that is not present in the original data. The 
correlation shows different patterns in comparison with the case showed by the quad tree. This is because of the different 
tree representation. 

Transition Matrix Over Scales:

Scale My = 0 ----> 1

            GB               GG               
G         1/3              2/3            

Scale My = 1 ----> 2
           WG         WB
G         2/3         1/3         
__________________
          BG      GG      BB
G       1/2      1/2      0 
B         0          0        1          

Scale       My = 0, Mx= 0
No. Cells  Ny = 1, Nx = 1

Data at Resolution
Scale       Mx = 2, My = 2 
No. Cells  Nx = 4, Ny = 4
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Figure 7. Sample images and calculation of their transition probabilities over the various scales in case of dyadic tree 
representation (1-2V 1-2H model), calculations are shown in this example up to scale My=2, Mx=0, similar calculations can 
be done for further scales. 
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Figure 8. Test cases of the dyadic tree: the top row consists of the data and bottom row consists of the simulations. Left part: 
layered system, right part: a checkerboard system, (image resolution Kx=6, Nx=64, Ky=6 and Ny=64). 

7. SIMULATIONS WITH DYADIC TREES 
Some simulations with the dyadic tree are performed in this section. The data that has been used in the quad tree is used once 
again here for comparison reasons.   
 
7.1 Merging Large-scale Structures with Fine-scale Structures 
In this example, simulations with original and smoothed dyadic trees are performed to merge large-scale structures with fine-
scale structures. This simulation is similar to the one performed using quad tree (see Figure 5). Figure 9 shows the data (1st 
column from the left) and the simulations (2nd, 3rd and 4th columns) for this example. The results in this example are rather 
good from geological point of view. The interpretation of the results is as follows. The technique tries to embed the fine-
scale structure into the large-scale structure to produce two-scale heterogeneous structure. Therefore, what is observed in the 
simulations is intrusion of the fine-scale structure that has specific characteristics (i.e. long correlation in the horizontal 
direction and short correlation in the vertical direction) in the large-scale structure.  Simulations with a smoothed dyadic tree 
have also been performed (see Figure 9, 3rd and 4th columns for degree of smoothing no.1 and degree of smoothing no.2 
respectively). One would recognize in case of degree of smoothing no. 1 (figure 9, 3rd column), that there is no significant 
difference between this simulation and the simulation by the original dyadic tree (no-smoothing effects, figure 9 in the 
second row). However, the simulations for the degree of smoothing no.2 show more black and white spots (figure 9 bottom 
row) than in the simulations with the original dyadic tree. The degree of smoothing  no.1 has relatively no influence in 
comparison with smoothing degree no. 2. 

7.2 Merging Heterogeneous Structures Using the Multi-Gray Concept Versus the Single Gray Concept 
In all the previous simulations, a single-gray concept is used to describe any degree of mixture between black and white. It is 
thought that a distinction between different degrees of mixture of black and white would produce different simulation results. 
In this example three different degree of gray are distinguished:  

1. Single gray: means a rectangle that contains any degree of mixture of black and white between more than 0%B up to 
less than 100%B is called gray. 

2. Two grays: mean a rectangle that contains more than 0%B and less than or equal 50%B is called gray1 while a rectangle 
that contains more than 50%B and less than 100%B is called gray2. 

3. Four grays: mean a rectangle that contains more than 0%B and less than or equal 25%B is called gray1. A rectangle that 
contains more than 25%B and less than or equal 50%B is called gray2. A rectangle that contains more than 50%B and 
less than or equal 75%B is called gray3. A rectangle that contains more than 75%B and less than 100%B is called gray4. 
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Figure 9. Comparison of merging two different heterogeneous structures using smoothing effects. Data (left column), no 
smoothing simulation (2nd column from the left), degree of smoothing no.1 more than 87.5%W is considered white (3rd 
column from the left) and degree of smoothing no.2 more than 75%W is considered white (right column). Image resolution 
Kx=8, Nx=256, Ky=8 and Ny=256. 



Figure 10 shows results of a numerical experiment that implement the concept of multi-grays. The left column of Figure 10 
is the data set used. The next three columns of images show the performed simulations using single gray, two grays and four 
grays respectively. The simulations show no difference between using single-gray and multi-gray concept. The reason is due 
to that fact that the information that is presented in the tree either stored by single-gray or multi-gray up to the pixel level is 
location dependent. Then when realizations are drawn from the tree at certain level is strongly dependent on that location in 
the tree whatever is coded by single or multi-gray concept.   
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Figure 10. Comparision of merging two different structure using single-gray and multi-gray concepts. Data (1st column from 
the left), single-gray simulation (2nd column), two-grays simulation (3rd column) and four-grays simulation (right column), 
image resolution Kx=8, Nx=256, Ky=8 and Ny=256. 

 
8. COMPARISONS BETWEEN QUAD TREES AND DYADIC TREES 

Another set of numerical experiments has been performed using different tree representation. Figure 11 shows some 
examples of thin horizontal layers and thin vertical layers. Another example with inclined thin layers at 45 degrees and at 
135 degrees. Figure 12 shows another examples with isotropic versus an-isotopic structures. 
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Figure 11. Comparision of quad tree and dyadic tree simulations (top row is the data, middle row is the simulations with the 
quad tree and bottom row is simulation with the dyadic tree (image resolution Kx=8, Nx=256, Ky=8 and Ny=256). 
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Figure 12. Comparision of quad tree and dyadic tree simulations (top row is the data, middle row is the simulations with the 
quad tree and bottom row is simulation with the dyadic tree (image resolution Kx=8, Nx=256, Ky=8 and Ny=256). 

7.3 Weighed Input Data 
In this example, an experiment is performed to study the influence of weighting the input data. The reason to use this option 
is to show the possibility to give more weight to the structure that it is considered to be more dominant. Figure 13 shows 
results of this experiment. The two structures in the most left column are the data. Inclined fine-scale structure (bottom 
image) and large-scale structure (top image). The second column from the left is the simulation results with only equi-
probable input data i.e. probability 0.5 either for the top image or for the bottom image. While in the third column we have 
simulation results from data that contains two input images of the fine-scale structure and one image of the large-scale 
structure. The weights in this case are 2/3 for the fine-scale structure and 1/3 for the large-scale structure. In the right column 
an experiment is performed with three data images of the fine-scale structure and one data image of the large-scale structure. 
The weights in this case are 0.75 for the fine structure and 0.25 for the large-scale structure. The simulation results show that 
increasing the weight of the fine structure leads to smearing of the large-scale structure. 

CONCLUSIONS 
 
A framework for the manipulation and simulation of binary images has been developed. The framework is based on 
hierarchical representation of binary images that can be straightforwardly extended to gray value images. This technique is 
attractive for many applications. A description of the technique with some simulations on synthetic data is presented. 
Computer codes written in FORTRAN language have been developed to implement this methodology. The programs are 
highly flexible, and permit the user to insert his ideas. A series of numerical experiments has been carried out to investigate 
the applicability of this methodology. The following conclusions can be drawn from the experiments: 

1. The proposed methodology is capable of merging different heterogeneity patterns at various scales. 
2. Stationary fields, nested and compound structures can be addressed by this methodology.  



3. A comparison between different tree descriptions (quad tree based representation versus dyadic tree based 
representation) has been addressed.   

4. In binary images that contains black and white colors, a comparison between the single-gray and the multi-gray concept 
has lead to the conclusion that there is no significant difference in the simulation results when using either of the two 
concepts. 

5. Both quad tree and dyadic tree show different simulation patterns in some cases and no differences in other cases. This 
behavior is dependent on the type of data.       

6. Smoothed trees have been introduced as a deviation from the original trees to show a way out for smoothing noisy data.  
7. Weighted input data provide an option to make some of the structures to be more pronounced than the other. This 

option could be useful for some applications.    
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Figure 13.  The influence of weighting the input data. Left column is the data, second, third and fourth columns are 
simulations with 1/2-1/2 probability, 2/3-1/3 probability and 3/4-1/4  probability respectivley.  (Image resolution: Kx=8, 
Nx=256, Ky=8 and Ny=256). 
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