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Abstract: Groundwater levels in urban areas are influenced by many factors. One of these factors is the leakage 
from sewerage systems, industry wastes and leaking pipelines. This leakage does not only influence the water 
levels, but it has also a strong impact on the groundwater quality. This paper focuses on the groundwater quality 
rather than the groundwater levels. In this paper, the influence of subsurface heterogeneity on the spreading of 
the contaminants that are released to the groundwater system is addressed.  
 A laboratory study on solute transport in artificially homogeneous and heterogeneous media is carried out. 
The motivation of this study is to get insight into the influence of heterogeneity on the phenomenon of dispersion and 
to distinguish the various dispersion regimes. The experiments are performed in a Prespex box filled with glass beads 
with different sizes to construct heterogeneous structures. Potassium Permanganate solution is used as an optical 
tracer and injected under steady state flow conditions. Analysis of the experimental results with some numerical 
deterministic and stochastic simulations is performed. The laboratory experiments and the numerical simulations 
demonstrate the influence of the presence of preferred pathways, the medium contrasts, the initial plume size and the 
spatial arrangements of the less and high permeable zones on the dispersion characteristics.   
 
1. Introduction 
 
For the simulation of groundwater contaminant transport numerical models are the most appropriate tools, due to 
their great flexibility and relatively low costs. However, validation of the concepts upon which these models are 
based, data and measurements from field tests and laboratory experiments are needed. For the support of new 
modelling approaches, field data are scarce and in general not sufficiently detailed. A physical model has been built 
for studying groundwater solute transport in artificial homogeneous and heterogeneous porous media. This model 
provides us with laboratory controlled conditions for a better understanding of the transport mechanisms in 
heterogeneous media. The motivation of these experiments is to get insight into the influence of heterogeneity on the 
phenomenon of dispersion and to distinguish the various dispersion regimes. Experimental studies of solute 
movement in saturated homogeneous media (column experiments) have been carried out since Bear [1961a]. 
However, multi-dimensional laboratory experiments in heterogeneous media have not been given much attention. 
The results of the laboratory experiments are compared with results predicted using deterministic and stochastic 
numerical models. 
 
2. Experimental Set-up 
 
The set-up consists of a box constructed from 1.2 cm thick Perspex sheets and filled with unconsolidated glass beads. 
The box is considered to represent a two-dimensional cross section of a confined aquifer with a limited third 
dimension. The inside dimensions of the working section of the box are 100 cm long, 56 cm wide, and 1 cm deep 
(see Figure 1). The ends of the box consist of two constant head tanks that are separated from the glass beads 
chamber by glass-fibber filters to keep the glass beads out of the head tanks. Influent and effluent reservoirs are 
connected to the constant head tanks by tubes. A pump is used at the influent tank for circulating the water in the 
system. The pump is capable of delivering a maximum of 6 l/min. By manipulating the water level in the inflow and 
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outflow tanks different horizontal discharge rates and Darcy's fluxes can be establishedand a uniform groundwater 
flow field is obtained.  
 
 
3. Porous Media and Method of Packing 
 
Different-sized pure silica glass beads are selected and used to model the heterogeneity. Table 1 shows the size range 
and the average diameter, dm, of the glass beads. The box is filled with one size of beads in case of a homogeneous 
sample. In case of heterogeneous samples, the box is filled with different sized beads. The filling and packing 
technique is as follows. Before packing, the beads are soaked in distilled water, washed and dried in 110oC oven to 
remove any impurities due to manufacture. The model is filled partially with distilled water. Then, the beads are 
filled from the top into the model by a funnel. During the filling process, the model walls are blown by a hammer. 
Packing is guided by pre-designed arrangement of the media, to produce a heterogeneous porous medium with 
appropriate configuration. The porous medium rests directly against the bottom and sides of the model. From the top 
a strip of sponge rubber confines the top. The sponge rubber prevents any flow short-circuiting along the top of the 
medium. In case of heterogeneous samples, some filter rules should be followed to avoid segregation at the interfaces 
(the small sized grains fill the pores of the big sized ones). Some segregation, however, cannot be avoided during 
packing, especially for the very fine glass beads. Three different packing are selected and used for presentation here. 
The first is a homogeneous, the second contains block-shaped heterogeneity (it is called medium 1 in the text) and 
the third is packed in a form of perfect and imperfect horizontal layers (it is called medium 2). Medium 1 and 2 are 
shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. Experimental set-up. 
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Figure 2. Glass beads box filled with two different heterogeneous structures. The left image is medium 1 and 
the right image is medium 2. 

 
 

Table 1. Physical Parameters of the Glass Beads 
   dm

(mm)     
   Measured K                  
(cm/sec)        

          Empirical K                              
  (cm/sec)  

   αl

 (mm) 

  Loose Dense Hazen Kozeny-Carman  

 0.08 - 0.11 0.095 0.0064 0.0046 0.009        0.008 0.018 

 0.40 - 0.52 0.460 0.314 0.125 0.212        0.186 0.353 

 0.85 - 1.23 1.040 1.09 0.66 1.080        0.953 0.800 

  2.0 ± 0.5 2.00 2.08 1.93 4.00        3.52 1.405 
 
4. Tracer 
  
Potassium Permanganate (KMnO4) solution is used as an optical tracer (dye). It is practically non-reactive. The tracer 
is injected instantaneously as a pulse through a 1mm hole at a distance of 27.5 cm from the top left corner of the 
model at the upstream side (6.5 cm from the inflow side). The tracer is introduced via a reservoir connected to the 
set-up by a plastic tube (see Figure 1). The evolution of the plume is monitored photographically at regular intervals. 
 
5. Estimation of Media Properties 
 
5.1 Estimation of Permeability 
Constant head column experiments are performed to estimate the hydraulic conductivity of the glass beads. The 
hydraulic conductivity of the various beads is shown in Table 1 for dense and loose packing. The hydraulic 
conductivity value of each glass beads represents the mean over three column experiments per sample. Empirical 
values are estimated using Hazen formula and Kozeny-Carman equation (Bear, 1972). The empirical values 
reasonably match the measurements (see Table 1). 
 
5.2 Estimation of Porosity 
The real velocity, V, is related to the specific discharge, q, by the effective porosity, ε as, 
 

 
ε
q  V =  (1) 

 
The effective porosity of beads (dm=0.46 mm) is estimated by recording the plume centroid at regular intervals and 
plotting it as shown in Figure 2 (left graph). A best-fit line is plotted to the experimental data.  The slope of the line 
corresponds to the real velocity as, 
 

 
dt
Xd  V 〉〈

=  (2) 

where, 〈X〉 is the centroid displacement of the plume from the injection point and t is the corresponding time. 
The specific discharge is calculated by the volume of water collected within a certain period of time, Q, divided by 
the cross-sectional area perpendicular to the flow direction as, 
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DB

Q  q =  (3) 

where, B is the model depth (56 cm) and D is the model thickness perpendicular to the flow direction (1 cm). From 
the experiment the effective porosity of (dm=0.46 mm) is estimated to be about 40%.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Estimation of parameters (left graph for porosity and right graph for dispersivity). 
 
5.3 Estimation of Dispersivity 
 
An approximate method is suggested to estimate dispersivity of beads size (0.40-0.52mm). The method is reliable in 
the beginning where the plume can be observed clearly. The method is based on measuring roughly the plume 
outline, which is elliptic in shape with maximum length, lxx, and maximum width, lyy, at specified times (see Figure 
4). These dimensions are based on the visual concentration at the plume edges, Ce. Ce is assumed to be equal to 0.01 
Cmax where, Cmax is the maximum concentration at the plume centre. The concentration field in homogeneous 
medium is known to be Gaussian. According to these assumptions one can write, 

 max01.0 C   Ce =  (4) 

where, Ce is the ordinate of Gaussian distribution at location lxx/2 from the centre and Cmax is the ordinate of the same 
Gaussian distribution at the centre. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Plume Dimensions and Estimation of Dispersivities. 

 
Eq. 4 can be written in a form of Gaussian distribution as, 

 01.0
8

exp   l-
xx

2
xx

2

=⎥
⎦

⎤
⎢
⎣

⎡

σ
 (5) 

With some manipulations, one can get a relation between the plume dimensions and the standard deviation of the 
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concentration distribution as,  

 l  l  yyyyxxxx 6
1,

6
1

== σσ  (6) 

The values of σxx
2 and σyy

2 are plotted versus travel time in Figure 3 (left). Using the linear best fitting techniques, the 
slope of the line corresponds to two times the dispersion coefficient (Dagan, 1989), 
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The dispersivities are calculated as, 

 
V
D       ,

V
D  yy

t
xx

l == αα  (8) 

where, αl is the longitudinal dispersivity, αt is the transverse dispersivity and V is the mean real velocity given by, 

 J K  V
ε

=  (9) 

where, J is the hydraulic gradient. 
This method produces dispersivities αl=0.333 mm and αt=0.028 mm for beads size (0.40-0.52mm). The results of the 
method have been compared with the formula developed by Harleman, et al. (1963). The formula reads, 

 R   D
k

w

xx βξ
ν

=  (10) 

 
where, ξ is an empirical parameter which is 88 for sand grains, and 54 for medium composed of spheres (as in the 
current case), β is an exponent which is 1.2 for all cases, vw is the kinematic viscosity of water, and Rk is the Reynolds 
number of intrinsic permeability defined as, 

 
ν w

k
k V R =  (11) 

  
 
 
The intrinsic permeability k is related to the conductivity K by, 

 

 
µ
ρ

w

w g  k
K =  (12) 

 
where, µw is the dynamic viscosity of the water, ρw density of water and g is the gravitational acceleration equal to 
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9.81 ms-2. 
Form Eq.10, Eq.11 and Eq.12 one obtains the relation between K and αl, and consequently the transverse 
dispersivity, αt, is taken as one tenth of the longitudinal one, 
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l
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=

=
 (13) 

 
Estimation of dispersivities by Eq.13 is tabulated in Table 1. One may notice that for dm=0.46 mm the value of αl 
obtained with Eq.13 (0.353 mm) is in the same order of magnitude as the value obtained from the visual method 
described here (0.333 mm). This agreement gives confidence in the formula developed by Harleman, et al. (1963). 
Therefore, it has been used to estimate dispersivities of the other glass beads and the results are displayed in Table 1. 
  
6. Experimental Programme 
  
In each test run, the set-up is packed and sealed. Flow is introduced by imposing a certain gradient on the model. 
After a steady state condition is established, a volume of dye is injected. The plume is monitored Photographically. 
Analysis of the experimental measurements (i.e. piezometric heads, the volume of the injected dye, plume centroid, 
plume dimensions, and the time of each snapshot) and the photographs are made. The experiments are run with 
initial concentrations, Co, ranging from 0.00316 gram/cm3 to 0.0104 gram/cm3 KMnO4. 
 
7. Procedure for Numerical Simulations 
 
Numerical simulations have been carried out to analyse the transport behaviour. The simulations are performed using 
computer models developed in this study. The simulation steps are:  
1) Schematzation: The heterogeneous medium 1 and medium 2 shown in Figure 2 are schematized and displayed 

in Figure 7 (top row).  
2) Discretization and Parameter Assignation: The homogeneous medium is discretized with gridsize 1 × 1 cm. 

For the heterogeneous media, a mesh of 2.5 × 1cm is used. The parameters of each glass bead are assigned 
according to Table 1. An average conductivity of the loose and dense values is applied. Local dispersivities 
are estimated using Eq.13. Porosity is assumed constant at 40%. 

3) Boundary and Initial Conditions: The boundary conditions are constant head boundary at left and right sides of 
the flow domain. These heads are measured by piezometers number 2 and number 5 for left and right boundary 
respectively (see Figure 1). No-flow boundaries are assigned to the top and the bottom of the model. For the 
initial condition of the transport problem, an instantaneous injection is proposed from a single point as shown in 
Figure 2 (left image) or from multiple-points as in Figure 2 (right image). 

4) Flow Simulator: The flow problem of each test is solved in terms of the hydraulic heads by the finite difference 
method. The hydraulic heads are checked with measured heads at some locations. The results are presented in 
Table 2. Good agreements are observed between the experimental results and the simulated ones. 

5) Transport Simulator: The two-dimensional equation that describes solute transport taking into account 
advection, dispersion and diffusion, can be written in the following form (Bear, 1972), 
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where, C is the concentration field at time t, Vx and Vy are the components of the Eulerian velocity field in x and y 
direction respectively defined as follows,  
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where, ε is the effective porosity, K is the isotropic hydraulic conductivity, Φ is the hydraulic head, Dd,xx, Dd,xy, Dd,yx 
and Dd,yy are components of pore scale (micro-level) dispersion tensor (Bear, 1972), 
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where, δij is the Kronecker delta, δij=1 for i=j and δij=0 otherwise, αl is the longitudinal dispersivity, αt is the 
transversal dispersivity, Dm is the molecular diffusion coefficient, the indices 1 and 2 correspond to x and y directions 

respectively and ⎮V⎮ is the magnitude of the resultant velocity given by V + V = | V| 2
y

2
x . 

The particle tracking random walk method (Uffink, 1990) is used to solve Eq. 14 numerically. The x-coordinate of 
the particle displacement is calculated by, 

                     

t|tY,tX |VαZ 
|V |
V -t|tY,tX |Vα Z

|V |
V 

t 
y

D+
x

D

ttY,tXV  tXttX

ppt
y

ppl
x

d,xyd,xx

ppxpp

∆′∆

+∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂

∂

+∆+=∆+

))()((2))()((2

))()(()()(

 (18) 

where,  Xp(t) is the x-coordinate of a particle at time t, Xp(t+∆t) is the x-coordinate of a particle at time t+∆t, ∆t is the 
time step of the calculations, Z, Z´ are two independent random numbers drawn from normal distribution with zero 
mean and unit variance. The terms between brackets are called the Fokker Plank terms (Uffink, 1990). Similarly, the 
y-coordinate can be calculated. 
 
8. Simulation Results and Discussion 
 
8.1 Deterministic Simulations 
 
Deterministic simulations have been performed to validate the numerical models developed in this study. In these 
simulations, the heterogeneous structure and the permeability values are assumed to be known with certainty. 
 
i) Homogeneous Medium 
 
The results of the tests in case of homogeneous medium are displayed in Figure 5 and 6. Figure 5 shows snapshots of 
the plume at different times. The numerical simulation matches the experimental observations reasonably well. The 
movement of the centroid of the plume and the longitudinal and transverse variances are presented in Figure 6. 
Numerical simulations are performed with the dispersivities calculated by the suggested visual method and the results 
are pretty good.   
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Figure 5. Numerical simulation of the tracer injection in homogeneous medium (left column is the experiments 

and right column is the corresponding numerical simulations). 
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Figure 6. Plume spatial moments in homogeneous field (left: 1st moment, certroid displacement, right: 2nd 

moment, spreading around the certroid). 
 
 
 
 
 

Table 2. Measured and Simulated Hydraulic Heads in the Experiments. 

Piezometer   

Figure 1 

Location from the left 
edge (cm) 

Measured Head                         
(cm) 

Simulated Head                         
(cm) 

  Homogeneous Medium.  

No. 3 X = 36.8 44.10 44.14 

No. 4 X = 63.5 40.50 40.40 

  

No. 3 

  

X = 36.8 

Heterogeneous  Medium1 

47.00 

        

46.75 

No. 4 X = 63.5 40.80 40.90 

  Heterogeneous Medium2  

No. 3 X = 36.8                  40.80 40.40 

No. 4 X = 63.5                  38.60 38.20 
 
ii) Heterogeneous Media 
 
The experimental tests and their corresponding numerical simulations are shown in Figure 8, 9 and Figure 10, 
11 for medium 1 and 2 respectively. 
- Heterogeneous Medium 1 with Single Point Instantaneous Injection: The flow results show good 

agreements in terms of the hydraulic heads at the selected piezometers as shown in Table 2. Figure 8 (2nd 
row) shows three snapshots of the simulated solute plumes at certain intervals. The overall comparison 
between the laboratory tests and the numerical simulation is satisfactory. The highest concentrations occur 
in the middle part, while the outer edges are more diluted. Figure 9 shows the plume statistics. It is clear 
from the numerical simulations that the centroid displacement is linear, and the breakthrough curves 
display Gaussian characteristics. However, the spreading of the plume shows non-Fickian behaviour. One 
may recognize that the longitudinal dispersion is decreasing. This behaviour is due to the fact that the 
plume size is small with respect to the the size of the heterogeneous units. The plume movement is 
influenced by the spatial arrangements of the various glass beads while the spreading mechanisms are 
governed by the local dispersivities in each glass beads. Since the plume moves from a highly permeable 
zone near the source to less permeable zones therefore the spreading is high in the beginning. However, 
after some time the plume goes to zones of lower dispersion and consequently the spreading rate decreases 
which causes the longitudinal variance to grow slowly and subdiffusive regime occurs. 

  
- Heterogeneous Medium 2 with Multi-Points Instantaneous Injection: Similar tests have been carried out for 

medium 2. The measured and simulated heads show also satisfactory agreement (see Table 2). Figure 10 
(2nd row) shows snapshots of the simulated plume at different times since release. The results show general 
agreement in terms of plume shapes. Figure 11 displays the plume centroid, breakthrough curve, 
longitudinal and lateral variances and the macro-dispersion coefficients. The breakthrough curves show 
non-Gaussian behaviour due to the influence of low permeable zones where parts of the plume are trapped 
and take long time to get released to high permeable zones. The longitudinal variance shows a 
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superdiffusive regime at early times. However, at 250 seconds the plume seems to reach a dispersive 
regime. This behaviour can be attributed to the fact that the plume sampled all the heterogeneity in the 
system so the heterogeneity does not contribute any more in the spreading. Therefore Fickian regime is 
reached with (Dxx = 2.5 cm2/sec). In heterogeneous medium 1 the breakthrough curve shows Gaussian 
behaviour. However, in heterogeneous medium 2 the breakthrough curve shows non-Gaussian behaviour. 
This means the breakthrough curve does not always reveal the real dispersive behaviour.  

 
 
8.2 Stochastic Simulations 
 
So far, deterministic simulations have been carried out to study the dispersion mechanisms in heterogeneous 
media. However in this section, some stochastic simulations are carried out. The idea behind these simulations 
is to estimate the uncertainty in the plume spreading due to the uncertainty in the heterogeneous structure which 
is often the case in field problems. Heterogeneity is often known at some sampled locations and away from 
these locations there will be uncertainties regarding the spatial structure. Stochastic realizations of the 
heterogeneous structures constructed in the experiments (i.e. medium 1 and medium 2) have been generated 
using the coupled Markov model developed by Elfeki et al. (1995). This technique has many applications (see 
e.g. Elfeki, et. al. 1996 and 1998). A short description is given below.  

The coupled Markov chain method is a stochastic technique that couples two chains. The first one is 
used to describe the sequence of variation in lithology in the vertical direction and the second chain describes 
the sequence of variation in the horizontal direction. The two chains are coupled in the sense that, a state of a 
cell in the domain is dependent on the state of two cells the one on top and the other on the left of the current 
cell. This dependence is described in terms of transition probabilities from the two chains. This technique is 
efficient in terms of computer time and storage in comparison with other techniques available in the literature 
such as sequential indicator simulation, Markov random fields and truncated Gaussian method. Figure 7 
(bottom row) shows realizations of the heterogeneous structures generated by the coupled Markov chain model. 
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(a) Schematization of Heterogeneous Medium 2.

(b) Stochastic Simulation.
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(a) Schematization of Heterogeneous Medium 1.

(b) Stochastic Simulation.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Schematic representation of the heterogeneous structures used in the experiments medium 1 and 2 (top 
row). Single realizations generated using the coupled Markov chain model, Elfeki, et al., 1995 (bottom row). 
Dark areas are low permeable and light areas are high permeable. 
 
In the stochastic simulations, it is assumed that the arrangement of the heterogeneous units (glass beads) is known in 
terms of transition probabilities between these units. Figure 7 (top left) shows schematization of medium 1 and a 
single stochastic simulation is presented in the bottom left corner in the same figure. The right side of Figure 7 shows 
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a schematization of medium 2 (on the right top corner) and its corresponding stochastic simulation is displayed in the 
right bottom corner.  Flow and transport equations have been solved in 100 realizations of these artificial structures. 
The ensemble concentration field and the standard deviation in the concentration field are calculated and displayed in 
Figure 8 (3rd and 4th rows) for medium 1 and in Figure 9 (3rd and 4th rows) for medium 2 respectively. In both cases, 
the ensemble concentrations show a wide spread over the region. This is due to the fact that there is a large degree of 
freedom in the variability from one realization to another. Considerable uncertainty in the concentration field is due 
to the wide range of variability among the realizations. It is noticeable that the real plume differs significantly from 
the ensemble plume. Therefore, the ensemble can only be used to provide the envelope where one can predict the 
plume location, however it is still difficult to quantify the uncertainty on the concentration values. The spatial 
moments of the real plume, the ensemble mean and 95% confidence intervals of the ensemble plume are shown in 
Figure 12 (left part is medium 1 and right part is medium 2). It is clear that the spatial moments fall in the 95% 
confidence intervals because the envelope of uncertainty is wide due to the high degree of uncertainty between the 
realizations. The only way to reduce this uncertainty is by performing conditional simulations. This point will be 
considered in the future research.    
 

0 10 20 30 40 50 60 70 80 90 100

-50

-40

-30

-20

-10

0

Time = 60 Sec.

0 10 20 30 40 50 60 70 80 90 100

-50

-40

-30

-20

-10

0

Time = 230 Sec.

0 10 20 30 40 50 60 70 80 90 100

-50

-40

-30

-20

-10

0

Time = 420 Sec.

Concentration 
(gram/cm  )

0

0.0002

0.0004

0.0006

3

0 10 20 30 40 50 60 70 80 90 100

-50

-40

-30

-20

-10

0

0 10 20 30 40 50 60 70 80 90 100

-50

-40

-30

-20

-10

0

0 10 20 30 40 50 60 70 80 90 100

-50

-40

-30

-20

-10

0

0 10 20 30 40 50 60 70 80 90 100

-50

-40

-30

-20

-10

0

0 10 20 30 40 50 60 70 80 90 100

-50

-40

-30

-20

-10

0

0 10 20 30 40 50 60 70 80 90 100

-50

-40

-30

-20

-10

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Deterministic and stochastic simulations of the experiments in the heterogeneous structure (medium 
1). Top row is three snapshots of the plume at 60, 230 and 420 seconds respectively, 2nd row is the 
corresponding deterministic simulation, 3rd row is the ensemble average concentration field and bottom row is 
the standard deviation in the concentration field.    
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Figure 9.  Spatial moments (left column), breakthrough curves (top right corner) and macro-dispersion (bottom 
right corner) coefficients of the plume in medium 1. 
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Figure 10. Deterministic and stochastic simulations of the experiments in heterogeneous structure (medium 2). 
Top row is three snap shots of the plume at 50, 90 and 170 seconds respectively, 2nd row is the corresponding 
deterministic simulation, 3rd row is the ensemble average concentration field and bottom row is the standard 
deviation in the concentration field. 
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Figure 11. Spatial moments (left column), breakthrough curves (top right corner) and macro-dispersion 
coefficients (bottom right) of the plume in medium 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 12. Uncertainty in spatial moments of the plumes (left column is medium 1 and right column is medium 

2). 
Conclusions 
 
A laboratory study on solute transport in artificially homogeneous and heterogeneous media is carried out. The 
experiments are performed in a Prespex box filled with glass beads with different sizes to construct heterogeneous 
structures. Potassium Permanganate solution is used as an optical tracer and injected under steady state flow 
conditions. Analysis of the experimental results with some numerical deterministic and stochastic simulations is 
performed. The laboratory experiments and the numerical simulations demonstrate the influence of the presence of 
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preferred pathways, medium contrasts, the initial plume size and the spatial arrangements of the less and high 
permeable zones on the dispersion characteristics. From qualitative analyses of the experimental data and the 
corresponding numerical deterministic and stochastic simulations of the tests the following conclusions and remarks 
can be made, 
1. Although the geological interfaces, which causes mega-dispersion, generally cannot be simulated easily in 

laboratory models, the tests illustrate the usefulness of controlled experiments in supporting theories of solute 
transport in heterogenous media (e.g. Non-Fickian theories). 

2. The tests demonstrate that it is possible to get better insight into the transport behaviour in homogeneous and 
heterogeneous media. The influence of various interfaces on dispersion behaviour can be recognized. 
Subdiffusive dispersion is observed in medium 1 because the plume moves from high permeable to less 
permeable zones. Superdiffusive dispersion can be seen in medium 2 due to the existence of preferential flow 
paths. 

3. The deterministic simulations of the experimental tests show qualitatively similar results in terms of plume 
shapes. 

4. The scale-dependent dispersion coefficient can be seen from the simulations in heterogeneous medium 2.  
5. When the plume is small in comparison with the size of the heterogeneity (heterogeneous medium 1) the plume 

movement is influenced by the spatial arrangements of the various units but the local dispersion process inside 
each unit governs the spreading mechanisms. In other words, the heterogeneity does not contribute in the 
spreading mechanisms it only influences the path of the plume. 

6. Both Gaussian (symmetric) and non-Gaussian breakthrough curves (steep fronts at the early times and elongated 
tails at later times) can be found in the heterogeneous media. The condition of occurrence of Gaussian or non-
Gaussian behaviour depends on the extension of the source perpendicular to the flow direction and the spatial 
arrangements of the heterogeneity. 

7. Good predictions of the solute plumes are possible by performing deterministic simulations using random walk 
method if all details of the aquifer heterogeneity and initial conditions are known in a deterministic sense. 

8. Stochastic simulations used for quantification of uncertainty show considerable uncertainty of the model 
predictions due the large degree of freedom from one realization to another. The only way to reduce the 
uncertainty in field applications is to perform conditioning. This point will be considered in future research. 
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