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Asstract. This paper extends the application of piecewise linear polynomial
functions to the analysis and parameter identification of linear time-invariant
continuous delayed systems. The real Schur from decomposition is used to
structure the resulting algebraic equations in such a way that it can be solved
columnwise by a forward substitution technique. The main advantage of this
method is that a simple recursive algorithm is derived. Tedious iterative algo-
rithms and direct matrix inversion for large scale systems are thus avoided in
calculating the expansion coefficients. Illustrative examples are given for dem-
onstration.

1. Introduction

Systems with time delay are met frequently in transmission lines, mechanical systems,
industrial and chemical processes, neural networks and others. In recent years, analysis,
state estimation and parameter identification of delayed systems have been established
using orthogonal functions (OFs) (e.g. [1-7]).

The main characteristic of OFs is that both sides of a given set of state space equa-
tions are approximated by a finite dimensional subspace spanned by a chosen set or or-
thogonal vectors. By equating the coordinates of the finite subspace with respect to the
chosen basis, a set of linear algebraic equations is obtained and can be solved by em-
ploying either techniques of matrix inversion or an iteration algorithm. Unfortunately,
the usefulness of this technique is limited by two difficulties, the first is the analyticity
requirements for both the input and output signals. The second difficulty is the appear-
ance of severe oscillations at large intervals!8l. To alleviate the aforementioned draw-
back, Lioul®! suggested that the piecewise linear polynomial functions (PLPF) should
be taken as a set of approximating basis functions and the interval should be divided
into smaller pieces. A significant advantage of PLPF for the problems of analysis and
parameter identification has been demonstrated inl19],
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In this paper, the application of PLPF is extended to the analysis and parameter iden-
tification of linear time-invariant continuous delayed systems. Using the delay opera-
tional matrix of integration, a Sylvester-type matrix equation is obtained. A transforma-
tion method is used which employs the real Schur form decomposition!!!] to structure
the equation in such a way that it can be solved columnwise by a forward substitution
technique. A recursive algorithm is derived and system equations can be solved with
low dimensional matrix. Computational examples are included to illustrate the effec-
tiveness of the proposed method.

2. Propertiesof PLPF

A piecewise linear polynomial function is defined as®!:

P(0)= Bl—(q/T) t, 0<t<(T/q)
R otherwise
1-i)+(q/T) ¢, i-D (T/q)=<t<i(T/q)
Pi(t):%1+i)—(q/T) t, (T/q)st<(i+1) (T/q)
B), otherwise (H
for i=12 .., m—-2
otherwise

[0,
P (=0
Ml-q)+(@/t) t, (q-D (T/q)<t<T,

where q=m-1

The basis functions {P_, P, ..., P, _; are linearly independent in the interval [0, T].
At the break point we have,
A i=j
Pi(jT/q):%) - for all i,j 2
NN

Furthermore, it is very easy to show that

mz_l P.()=L P(t)=1, 3)

where, =
L= 111 1], and (4)
P() = [P,() P,(1) ... P, (OT. (5)

The arbitrary function f(t) can be approximated as:
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m-1

f(t) = z f. P.(t)=F P(1), (6)
1=0

where,
F=1[f f..f, 1. (N
The coefficients of the expansion are obtained from:
f; = f(iT/q) . ®)

The operational matrix of integration for the PLPF can be performed by the proce-
dure given in!°], as follows:

J’; P(s)ds=GP(t) . 9)

Where G is called the operational matrix of integration and is defined as:

M 05 05 05 .. 05

0
o5 1 1 . 1p
H o0 a5 1 15
a 0

G=(T/q) 0 (10)

| a
a 0
D . . . D
a 0
® 0 0 0 . 0%

The delay PLPF P;(t — jT/q) is defined as the shift of PLPF P;(t) along the time axis
by J subintervals. It is straight forward to verify that the integration of P(t — JT/q) can be
performed by the procedure given inl®] as follows:

I; P(s-JT/q) ds =HP(t) , (11)
where,
H=1I[m;-J|G . (12a)
@ I(m_J)D
I[m; -J]=0 0 (12b)
® 00

I(m -1 is an (m —J) x (m —J) identity matrix.
In the next section, the concepts introduced above are applied to the analysis of linear
time-invariant delayed systems
3. Analysisof Time-Delay Systems

Consider a linear time-invariant system with time delay described by the following
state equation,
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x(t) = Ax(t—a)+Bu(). (13)

Where x(t) OR", u(t) OR, and A, B are n x n and n x r constant matrices, respective-
ly. o is a positive fixed delay. The initial conditions are:

x(0) =K, (14)
x()=@t) fort,0 . (15)
Where K is a constant vector and @(t) is an arbitrary known time function.

Approximation of x(t), ((t), and u(t) by PLPF of size m gives:

m-1
x()=Y x; P()=XP(1), (16)

2,

m-1
Q0= Z Q P()= @P(1) , (17)

1=0

m-1
u(t) = z u, P(t)=UP(1), (18)

1=0

where,

X=[xy Xq o X1l (19)
o=[® @ - @1l (20)
U=[u, u; ... uy4q]. 1)

Here X, @, and U are n x m, n X m, and r X m constant matrices, respectively. @ and U
can be computed using equation (8), and X is to be determined.

In order to solve the state equation with time delay, equation (13) is integrated from O
tot:

x()—x(0) = A I; x(s—0) ds+B I; u(s) ds . (22)

For the interval 0 <t < a, equation (15) is used:
X(t—0)=@t—0) . (23)

Substituting equation (23) in equation (22) results in:
0O=A * ds+A : ds +B t d
t)— = I —a) ds+ —a) ds+ I
x() - x(0) 0 @s—0) ds IO X(s—0) ds 0 u(s) ds (24)

Substituting equations (16) — (18) into equations (24) and applying (3), (9), (11), and
(14) give:
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XP(t) — KLP(t) = AgHP(o)LP(t) + AXH[I-P(0)L]P(t) + BUGP(t) , (25)
or, the algebraic matrix equation ,
X=AXW+S, (26)
where
W = H[I-P(a)L], 27
S = KL+A@HP (o)L +BUG . (28)

The matrix P(0) is equivalent to the matrix P(t) defined in equation (5) with t = .

Therefore, the solution of equation (26) is obtained by

Oxg O Osg O
O O O O
ERSEE 0s: O
O O O O
Oo- 0O o- 0
O OJ 10 O
0- cu-wroartg. g (29)
O O O O
[ o 0O
0O 0 O O
O O O O
E‘m—l %m—la

where I is an mn x mn identity matrix and the operator [J denotes the Kronecker prod-
uct!!2], However, much more computer time is consumed in solving mn simultaneous
equations, making this approach impractical except for small systems. Therefore, it is
important to search for a simple recursive formula for solving equation (26). Fortunate-
ly, a recursive formula can be found by transforming W into its real Schur form decom-
position!13]. The transformed system of equation (26) is given by

XV) = AXV)(VITWV)+SV (30)

Where V is orthogonal matrix and (VT WV) is upper quasi-triangular matrix (A qua-
si-triangular matrix is triangular with possible nonzero 2 X 2 blocks along the diagonal).
If we define XV =Y, VI W V =R and SV = M, the transformed system becomes :

Y=AYR+M 31)

Assuming 1y +1.k is zero, then if the K™ column of each side of (31) is taken, the fol-
lowing equation is yield:

Ok 0
yk :Agzrj’k yJD+mk N k = :L m , (32)
=

where

Y=10y; Yo o Yml> (33)
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M=[m m, ..m_] , (34)
Hence, y, can be found by solving
k-1 O
(I-Ar )y =my +A§er’k ng 35)
j=1

Equation (35) can be solved columnwise by starting at column 1 and working for-
wards to column m. If (I - A 1y ) is nonsingular, these linear systems of equations can
be solved using Gaussian elimination with partial pivoting. As shown in equation (35),
only n simultaneous equations need to be solved. Tedious direct method for solving mn
simultaneous equations are avoided. Thus, the computer time is greatly reduced. How-
ever, if ;) # 0 (due to the presence of 2 x 2 bumps on the diagonal of R), then we
have,

k-1 g
(I=ATi ) Y = Tiep k AYk+1 = My +A§Z Tk Y@, (36)
j=1

Letting k =k + 1 in equation (36) and utilizing the fact that the quasi upper triangular
matrix cannot have two consecutive nonzero elements along its subdiagonal, implies
that r, ., 1, =0, and equation (36) becomes

k-1 O
(= ATy kan) o1~ Tk +2AYk =My 4 FA @z T k+1YjH- 37
=1 E
Then equation (37) can be written as;
O (k-1 N
Yirr = B Hi eaa Ayy tmyg +A @Z T2y (38)
E j=1 %
where,
Ey =T - Any, ke (39)
Substituting equation (38) into equation (36) gives,
7Y=Ly (40)
where,
2 =(I-A n g -1y k ABg T kA 41

g k-1 g
Ly =t A Ey Enku‘*Aﬁz I k+1Yj ED+ my +AL rj,ij% S 42

% =1

"
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Equation (40) can be solved using Gaussian elimination with partial pivoting.

At this point, the recursive algorithm for evaluating X can be summarized as follows:

Step 1 : Compute an orthogonal matrix V such that VT W V is a quasi-upper trian-
gular by using the real Schur from decomposition.

Step2: Ifrg,, =0, hence compute yy fork = 1,2, ..., m from equation (35), else
compute y, from equation (40).

Step 3: Obtain the desired solution matrix X from the relation X = YVT.

Example 1
Considered the linear time-delay system described by the following state equation!!3].
x(t) = 4x(t-0.25) ,

with x(0) = 1.0 and x(t) = 0 for — 0.25 < t < 0. For q = 4, the PLPF of x(t) is solved for
0 <t<1. The computational results are given in Table 1. A comparison of the results by
using the block-pulse functions, Taylor series approximation, and the exact solution are
also presented in Table 1. From the table, it can be seen that very satisfactory results are
obtained and the proposed method is more accurate than that of the block-pulse func-
tions and Taylor series approximation.

TasLe 1. Solution of example 1.

. Block-pulse Taylor series Proposed

Time (1) method method method Exact
0 1.000 1.000 1.000 1.000
0.25 1.500 1.000 1.000 1.000
0.5 2.750 1.757 2.000 2.000
0.75 4.875 3.000 3.500 3.500
1.00 7.000 4.892 6.250 6.167

Parameter | dentification

The identification problem is to estimate the unknown matrices A and B provide that
x(0) @, x; and u; are known. The system order n and the time delay a are assumed
known a priori.

Now, by dropping P(t) from equation (25) gives:

X-KL=A@HP(@)L+AXH[I-P@L]+BUG , (43)
or
AN+BUG=X-KL , (44)
where,
N=¢@oHP@)L+XH[-P)L] , (45)
By defining a parameter vector as,
q=[A BIT , (46)

we can rewrite equation (44) in compact form as ,
Qe=J1 , (47
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where,
Q=[NT (UG)T], (48)
J1=[X-KL]T . (49)
Since both W and J1 are known, the least-square estimate 8 can be obtained as,
e=QTQ)1 QT . (50)

Provided that the matrix inversion exists and m = (n + r). An illustrative example is
given next which shows that the method gives accurate parameter estimates.

Example 2

Consider a system modelled by the following delay-differential equation
X(t) =ax(t—0.25) + b u(t)
with x(t) = 0 for t < 0. The following numerical values are used.
u(t) = unit impulse
X [0 0.125 0.1875 0.3438 0.6094]

by using the proposed method, the estimated O using q=4 s
a=4.0
b=1.0

Notice that the data in this example are obtained with parameter valuesa=4 and b= 1.

5. Conclusion

The PLPF has been successfully extended to solve the linear time-invariant delayed
system. This approach is simple, straight forward and gives a piecewise point result.
The recursive algorithm presented has two main advantages; first, the analytical require-
ments for both the input and output are not required. Second, tedious iterative algo-
rithms and direct matrix inversion for large scale systems are avoided. These facts result
in considerable saving of computing time. The results obtained are satisfactory.

References

[11 Chen, W. and Shih, Y., IEEE Trans. Autom. Control, 23, 1023 (1978).

[2] Chang, R.and Wang, M., Int. J. Systems Sci., 16, 1505 (1985).

[3] Hwang, C. and Chen, M., Inz. J. Control, 41, 403 (1985).

[4] Lee L and Kung, F., Int. J. Systems Sci., 16, 1249 (1985).

[5] Horng, I.and Chou, J., Int. J. Control, 41, 1221 (1985).

[6] Mohan, B. and Datta, K., Int. J. Systems Sci., 19, 1843 (1988).

[7] Ardekani, B., Samavat, M. and Rahmani, H., Int. J. Systems Sci., 22, 1301 (1991).

[8] Liou,C.and Chou, Y., Int. J. Systems Sci., 18, 1919 (1987).

[9] Liou, C.and Chou, Y., Int. J. Systems Sci., 18, 1931 (1987).

[10] Liou, C. and Chou, Y., Int. J. Control, 46, 1595.

[11] Golub, G. and Loan, V., Matrix computation (Baltimore: John Hopkins University Press).
[12] Bellman, R. and Cooke, K., Delay Differential Equations (New York: Academic Press) (1963).
[13] Chung, H. and Sun, Y., Int. J. Control, 46, 1621 (1987).



Analysis and Identification of ... 49

Sk e ke dast (a5l ey J S
5 gl sadate itas imbas JI g5

A:@.n)‘c!u.kw
ﬁﬂ’&%’@&c@@/%ﬁc&@&/@M}%ﬂgﬂ/@w/w
%JM/@A/W’—SJJ

sxie et Lo 1 g3 Godes 13,50l 0n s i)
Gl e b Sl s oUsS ol el iy s Jeboed 3 50
QY:M\J&AC&}J Schur & SLS& & o 3l 1 oSy
Ly all ods et ol s sl gl 8 2o i L
L) el 2l s ool By st s L
amma@yw\r&mo@_@@ﬁjuuﬂs,ﬂ\
Ly el i Ll o ) V) s 25501 e el

.5, 45 Al






