Some fixed point generalizations are not real generalizations

R.H. Haghi ${ }^{\text {a }}$, Sh. Rezapour ${ }^{\text {a }}$, N. Shahzad ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Azerbaijan University of Tarbiat Moallem, Azarshahr, Tabriz, Iran
${ }^{\text {b }}$ Department of Mathematics, King AbdulAziz University, P.O. Box 80203, Jeddah 21859, Saudi Arabia

A R TICLE I N F O

Article history:

Received 15 May 2010
Accepted 26 October 2010

Keywords:

Cone metric space
Fixed point
Coincidence point
Quasi-contraction
Contractive multifunction
Nonexpansive map
Banach space

Abstract

In this paper, we shall prove that some generalizations in fixed point theory are not real generalizations.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is known that common fixed point (and coincidence point) theorems are generalizations of fixed point theorems. Over the past few decades, there have been a lot of activity in fixed point theory and a number of authors took interest in generalizing fixed point theorems to coincidence point theorems and common fixed point theorems. In this paper, we shall show that some coincidence point and common fixed point generalizations in fixed point theory are not real generalizations as they could easily be obtained from the corresponding fixed point theorems. Here, we shall review only some results which appeared recently in the literature. This shows that authors should take care in obtaining real generalizations in fixed point theory.

2. Main results

In this section, we state and prove our main results. First, we give the following lemma which is a key result.
Lemma 2.1. Let X be a nonempty set and $f: X \rightarrow X$ a function. Then there exists a subset $E \subseteq X$ such that $f(E)=f(X)$ and $f: E \rightarrow X$ is one-to-one.
Proof. Define a multifunction $F: f(X) \rightarrow 2^{X}$ by $F(y)=\{x \in X: f(x)=y\}$. By using the axiom of choice, F has a selector, that is, there is a function $g: f(X) \rightarrow X$ such that $g(y) \in F(y)$ for all $y \in f(X)$. Note that, $f(g(y))=y$ for all $y \in f(X)$. Now, put $E=\{g(y): y \in f(X)\}$. It is clear that f is one-to-one on E and $f(E)=f(X)$.

2.1. Contractive maps

Let (E, τ) be a topological vector space and P a subset of E. Then, P is called a cone whenever
(i) P is closed, nonempty and $P \neq\{0\}$,

[^0]0362-546X/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2010.10.052

[^0]: * Corresponding author.

 E-mail addresses: nshahzad@kau.edu.sa, Naseer_shahzad@hotmail.com (N. Shahzad).

