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1. INTRODUCTION

The method of quasilinearization developed by Bellman and Kalaba [1]
provides an explicit approach for obtaining approximate solutions to non-
linear differential equations and it gives point-wise lower estimates of the
solution of the given problem provided the function involved is convex.
Further, the sequence of approximate solutions converges monotonically
and quadratically to the solution. Recently, this technique has received
much attention after the publication of very interesting articles by Laksh-
mikantham et al. [4-8]. In these articles, the convexity assumption was
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surprisingly relaxed and the method was generalized and extended in
several directions to make it applicable to a larger class of problems.

Shahzad and Vatsala [13, 14] and Shahzad and Sivasundaram [12]
developed quasilinearization methods for second order boundary value
problems. For a complete survey of the generalized quasilinearization
method for nonlinear problems, see [9]. More recently, Nieto [10] pre-
sented a generalized quasilinearization technique for a nonlinear Dirichlet
problem to obtain a sequence of approximate solutions converging
quadratically to the solution of the problem.

In this paper, we discuss a second order ordinary nonlinear differential
equation with Neumann boundary conditions—a problem in which the
normal gradient of the unknown function is specified at each point of the
boundary (Neumann Problem) and develop the method of quasilineariza-
tion for this problem.

2. PRELIMINARIES

We know that the Neumann boundary value problem
—-W'(t) = 2¥(t), te]0,7],
v'(0) =¥ (m) =0,
has a nontrivial solution if and only if A =m? (m =0,1,2,3,...). For
A #= m? and {(t) € C[0, 7], the unique solution of the problem

—W"(t) — AV (1) = ¢(t), te][0,7],
V(0) = W'(m) =0,
is given by
V(1) = fowG)\(t,u)g(u)du,

where

1
G0 = T (= A )

cosh[\/—_A(w—t)]cosh[\/—_Av], O<v<t<mw
X{cosh[\/—_)\t]cosh[\/—_/\(w—u)], O<t<v=m
(A <0)
Gi(t.0) = | 1 {cos[ﬁ(w—t)]cos[\/xu], O<v<t<m
A VA sin(VA 7) | cos[VAt]cos[VA (7 — v)], O<t<v<mw
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Clearly, G, = 0 for A < 0. Now, consider the following nonlinear problem

—¥'(0) =f(6,x(0), 1€ [07], (2.1)
x'(0) =x'(m) =0,

where f:[0, 7] X R - R is continuous. The problem (2.1) is equivalent to
the integral equation

x(t) =x(0) - fo’(t —5)f(5,x(s5)) ds
with
/wa(s,x(s)) ds = 0.
We shall say that o € C?[[0, w],R] is a lower solution of (2.1) if
—a'(t) <f(t, (1)), t<€[0,7],
a'(0) >0, a'(m) <0.
Similarly, we shall say that 8 € C?[[0, 7], R] is an upper solution of (2.1) if

=B"(t) = f(t, B(1)), t<][0,7],
B'(0) <0, B'(7) = 0.

2.1. LEMMA. Assume that «, B € C?[[0,7],R] are lower and upper
solutions of (2.1), respectively, such that a(t) < B(t) for every t € [0, 7].
Then there exists a solution x(t) of (2.1) such that a(t) < x(t) < B(t) for
t [0, ]

We do not provide a proof of the lemma for it is similar to the proof of
Theorem 2.1 of [11] (see also [3]).

It is worth mentioning that Lemma 2.1 is not valid for the natural
definition of lower and upper solutions of (2.1), namely,

—a’(t) <f(t,a(t)), t<][0,7],
a'(0) <0, a'(m) <0
and
=B"(1) =f(1,B(1)), t<[0,7],
B'(0) =0, B'(m) = 0.
For example, consider the problem
-x"(t) =1, te[0,7],
x'(0) =x'(m) = 0.
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It has no solution since [Jlds # 0. Clearly, a(f) =cost is a lower
solution and B(¢) = — 3t + 7t + 1 is an upper solution. Also, a < B.
However, there is no solution between « and B.

3. MAIN RESULT

3.1. THEOREM. Assume that

(A) a,,B, € CY0,7],R] are lower and upper solutions of (2.1),
respectively, such that a, < B, on [0, 7],

(A,) fe ClO,R] is such that f (¢, x), f, (t, x) exist and are continu-
ous for every (t, x) € Q, where

Q={(t,x) €[0,7] X R: e, (1) <x < B,(1)},
(Ay) f(t,x) <0 forevery (t,x) € Q.

There there exists a monotone nondecreasing sequence {«,} which converges
uniformly to a solution of (2.1) and the convergence is quadratic.

Proof. Let F(t,x):[0,7] X R > R be such that F(¢, x), F.(t, x),
F_(t, x) are continuous on [0, 7] X R and

F. (t,x) >0, (t,x)€[0,7] XR. (3.1)

Motivated by Eloe and Zhang [2], take ®(z,x) = F(¢, x) — f(¢, x) on
[0, 7] X R. In view of (3.1), we see that

F(t,x) 2 F(t,y) + E(t.y)(x — )
for x >y and hence
f(t.x) = f(t,y) + E(t,y)(x —y) = [®(t,x) = @(1,)]. (32)
Consider the Neumann problem
—u' =g(t,u; a,)
=f(t, ) + F (1, a,)(u = a,) = [®(t,u) = (£, ,)] (3.3)
W (0) = u(m) =0.
The inequality (3.2) and (A,) imply
—ag <f(t, @) =g(t, a5 a,),
— By =f(t, B,)
> f(t, @) +F(t, a,)(B, — @,) = [(1, B,) — D(t, a,)]
=8(1, By a,)-
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By Lemma 2.1, there exists a solution «; of (3.3) such that o, < @, < 8,
on [0, 77]. Next, consider the Neumann problem

—u" =g(t,u; ay) (3.4)
u'(0) =u'(m) =0.
Observe that
—af =g(t,a;; a,)
= f(t @) + Fta,) (@ — a,) — [, a)) — B(1, a,)]
<f(t, q) =g(t, a5 o).
—B; = f(1,B,)
> f(t, ;) + F(t, ) (B, — ay) — [®(t, B,) — P(1, )]
=8(4, By 1),

in view of (3.2). It now follows from Lemma 2.1 that there exists a solution
a, such that a; < a, < B, on [0, w]. Consequently, we see that «, < «,
< a, < B, on [0, w]. Continuing this process successively, we obtain

a, <o <o, <a,<f,

on [0, 7], where the elements of the monotone sequence {«,} are the
solutions of the problem

—u’ =g(t’u;an71)
=f(t7an71) +Fx(t’ anfl)(u - anfl) - [(I)(t’u) - (I)(t’anfl)]
(0) = w () = 0.

Since the sequence {«,} is monotone, it follows that it has a pointwise limit
x. Consider the following linear Neumann problem

—u' = f,(1), (3:5)
u'(0) =u'(m) =0,
where
(1) =g(t, e (t); a,_ (1)), t€][0,m].

Since g is continuous on (), the sequence {f,} is bounded in C[[0, =], R]. It
is clear that

lim £,(6) = f(1, (1)), 1< [0,7].
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But

(1) = @,(0) = ['(t = 5),(5) ds

and
[ £ () ds = 7 (Fi(s, i) [ () = ayi(5)]

— (s, a,(s)) + (s, e, 4(s))) ds.

Therefore {«,} is bounded in C 2[[0, 7], R] and so {a,} 1 x uniformly on
[0, 7r ]. Tt further implies that

x@)=x@)—£“t—ﬂf@J(ﬂ)ﬁ, te[0,7]
and
/wa(s,x(s)) ds = 0.

Hence x is a solution of (2.1).
To show the quadratic convergence, we set p,(¢) = x(¢) — a,(t). Then
using the definition of «, and the mean value theorem, we have

—pi(1) = f(1,x(1)) —g(t, a,(1); @, (1))

= £t x(6)) = f(t; @, 1(1)) = Fo(ts o, 1(0))[ @, (1) = @, _1(1)]
+[ (1, @, (1)) = (¢, @, _(1))]

= F(t, %, (1) = F(t, a,4(1))
—F (1, @, () e (1) = e,y (1)]
+[®(1, @,(1)) — (1, x(1))]

= F(, §)[x(1) = a, ()] = F(t, a1(0) [ @,(1) = a,_4(1)]
+[2(1, @, (1)) = B(t, x(1))]

= (F(t,§) = F(t, a,1(0)))[x(1) = a,_1(1)]
FF(1 @, () [x(1) = a,(1)]
+[®(1, @, (1)) — (1, x(1))]

= Fo(t, o) [ € = a, (D] [x(1) = a,_y(1)]
+F(t @, () [x(0) = e, ()] = (1, M) [x(1) = e, ()],



362 AHMAD, NIETO, AND SHAHZAD

where
a, (1) <é<o=<x(t), a,(t) <n<x(t).
Set
h,(t) = F(t, a, (1)) — (1, m)
and

kn(t) = Fxx(t’o-)[f_ anfl(t)][x(t) - anfl(t)] _Mpffl(t)’

where 0 < F, (t,y) < M, (t,y) € Q. Clearly k,(¢) < 0. Since F, is nonde-
creasing and «a,_,(¢) < 7, it follows by (A ;) that there exists A < 0 and an
integer N such that h,(¢) < A, t € [0, 7] for n > N. Thus the error p,
satisfies the Neumann problem

—pn(t) = Ap, (1) = [, (1) = Al p,(£) + Mp;_\(1) + k, (1),
pu(0) =p,(m) = 0.
This implies that

Pu(1) = [T G(t.){[a(5) = A pa(s) + Mpi1(5) + i, (5)) ds.
and so
pa(t) < MLWGA(I,S)pf_l(s) ds, n=>N.
Hence there exists a constant K > 0 such that

Ipl < Klp,_ilI’,  n=N,

where ||x|| = max{|x(¢)|: ¢ € [0, w1} is the usual uniform norm on CI[[0,
7], R].
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