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1. Introduction

In 1969, Ky Fan [5] established the following results:
Let C be a nonempty, compact, convex subset of a normed space E. Then for any

continuous mapping f from C to E, there exists an x0 ∈C with

‖x0 − f(x0)‖= inf
y∈C

‖f(x0)− y‖:

This result has been generalized to other sets C and other types of maps; see, for
instance, [1,6,8–14,16,17]. Recently, Lin and Park [10] obtained a multivalued version
of Ky Fan’s result for �-condensing U	

c maps (see de1nition below) de1ned on a
closed ball in a Banach space. More recently, O’Regan and Shahzad [13] extended
their result to countably condensing maps. The aim of this paper is to obtain some Ky
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Fan approximation type results for 
-condensing and 1-
-contractive s-KKM(C; C; E)
multimaps, where C is closed convex subset of a HausdorH locally convex space E
with int(C) �= ∅. Since every �-condensing map F : C → 2E is 
-condensing if C is
complete and since U	

c class is a subclass of the s-KKM class, our results generalize
the work of Lin and Park [10]. We also derive the Leray–Schauder-type result of Chang
et al. [2] as an application of our approximation result.

2. Preliminaries

Let E be a HausdorH locally convex space. For a nonempty set Y ⊆ E, 2Y denotes
the family of nonempty subsets of Y . If L is a lattice with a minimal element 0, a
mapping 
 : 2E → L is called a generalized measure of noncompactness, provided the
following conditions hold:

(a) 
(A) = 0 if and only if JA is compact.
(b) 
(co(A)) = 
(A); here co(A) denotes the closed convex hull of A.
(c) 
(A ∪ B) = max{
(A); 
(B)}:

It follows that if A ⊆ B, then 
(A)6
(B). Let C be a nonempty subset of a
Banach space X . The Kuratowskii measure of noncompactness is the map � : 2X → L
de1ned by

�(A) = inf{�¿ 0 : A can be covered by a 1nite number of

sets each of diamter less than �}
for A∈ 2X . The HausdorH measure of noncompactness is the map � : 2X → L de1ned
by

�(A) = inf{�¿ 0 : A can be covered by a 1nite number of

balls with radius less than �}
for A∈ 2X . Examples of the generalized measure of noncompactness are the
Kuratowskii measure and the HausdorH measure of noncompactness (see [15]).
Let C be a nonempty subset of a HausdorH locally convex space E and F : C →

2E . Then F is called 
-condensing provided that 
(A) = 0 for any A ⊆ C with

(F(A))¿
(A). It is clear that a compact mapping is 
-condensing and also every
mapping de1ned on a compact set is necessarily 
-condensing. Suppose that L is
a lattice with a minimal element 0 and that for each l∈L and �∈R, with �¿ 0,
an element �l∈L is de1ned. A mapping F : C → 2E is called a k-
-contractive
map (k ∈R with k ¿ 0) provided that 
(F(A))6 k
(A) for each A ⊆ C and F(C)
is bounded. Obviously, if C is complete, F is k-
-contractive, with 0¡k¡ 1, and

= � or �, then F is 
-condensing.
Let X and Y be subsets of HausdorH topological vector spaces E1 and E2, respec-

tively. Let F : X → K(Y ); here K(Y ) denotes the family of nonempty compact subsets
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of Y . We say F is Kakutani if F is upper semicontinuous with convex values. A
nonempty topological space is said to be acyclic if all its reduced KCech homology
groups over the rationals are trivial. Now F is acyclic if F is upper semicontinuous
with acyclic values. The map F is said to be an O’Neill map if F is continuous and
if the values of F consist of one or m acyclic components (here m is 1xed).
Given two open neighborhoods U and V of the origins in E1 and E2, respectively,

a (U; V )-approximate continuous selection of F : X → K(Y ) is a continuous function
s : X → Y satisfying

s(x)∈ (F[(x + U ) ∩ X ] + V ) ∩ Y for every x∈X:

We say F is approximable if it is a closed map and if its restriction F |K to any
compact subset K of X admits a (U; V )-approximate continuous selection for every
open neighborhood U and V of the origins in E1 and E2, respectively.

For our next de1nition let X and Y be metric spaces. A continuous single valued
map p : Y → X is called a Vietoris map if the following two conditions hold:

(i) for each x∈X , the set p−1(x) is acyclic;
(ii) p is a proper map i.e. for every compact A ⊆ X we have that p−1(A) is compact.

De�nition 2.1. A multifunction # : X → K(Y ) is admissible (strongly) in the sense
of Gorniewicz, if # : X → K(Y ) is upper semicontinuous, and if there exists a metric
space Z and two continuous maps p : Z → X and q : Z → Y such that

(i) p is a Vietoris map and
(ii) #(x) = q(p−1(x)) for any x∈X .

Remark 2.1. It should be noted [7, p. 179] that # upper semicontinuous is superOuous
in De1nition 2.1.

Suppose X and Y are HausdorH topological spaces. Given a class X of maps,
X(X; Y ) denotes the set of maps F : X → 2Y belonging to X, and Xc the set of
1nite compositions of maps in X. A class U of maps is de1ned by the following
properties:

(i) U contains the class C of single valued continuous functions;
(ii) each F ∈Uc is upper semicontinuous and compact valued; and
(iii) for any polytope P, F ∈Uc(P; P) has a 1xed point, where the intermediate spaces

of composites are suitably chosen for each U.

De�nition 2.2. F ∈U	
c (X; Y ) if for any compact subset K of X , there is a G ∈Uc(K; Y )

with G(x) ⊆ F(x) for each x∈K .

Examples of U	
c maps are the Kakutani maps, the acyclic maps, the O’Neill maps,

and the maps admissible in the sense of Gorniewicz.
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Let Q be a subset of a HausdorH topological space X . We let JQ (respectively, @(Q),
int(Q)) to denote the closure (respectively, boundary, interior) of Q.
Let C be a subset of a HausdorH topological vector space E and x∈X . Then the

inward set IC(x) is de1ned by

IC(x) = {x + r(y − x): y∈C; r¿ 0}:
If C is convex and x∈C, then

IC(x) = x + {r(y − x): y∈C; r¿ 1}:

De�nition 2.3. Let X be a convex subset of a HausdorH topological vector space and
Y a topological space. If S; T : X → 2Y are two set-valued maps such that T (co(A)) ⊆
S(A) for each 1nite subset A of X , then we say that S is a generalized KKM map
w.r.t. T . The map T : X → 2Y is said to have the KKM property if for any generalized
KKM w.r.t. T map S, the family

{S(x): x∈X }
has the 1nite intersection property. We let

KKM (X; Y ) = {T : X → 2Y : T has the KKM property}:

Remark 2.2. If X is a convex space, then U	
c (X; Y ) ⊂ KKM (X; Y ) (see [4]).

De�nition 2.4. Let X be a nonempty set, Y a nonempty convex subset of a HausdorH
topological vector space and Z a topological space. If S : X → 2Y , T : Y → 2Z ,
F : X → 2Z are three set-valued maps such that T (co(S(A))) ⊆ F(A) for each
nonempty 1nite subset A of X , then F is called a generalized S-KKM map w.r.t.
T . If the map T : X → 2Z satis1es that for any generalized S-KKM w.r.t. T map F ,
the family

{F(x) : x∈X }
has the 1nite intersection property, then F is said to have the S-KKM property.
The class

S-KKM (X; Y; Z) = {T : Y → 2Z : T has the S-KKM property}:

Remark 2.3. If X = Y and S is the identity mapping 1X , then S-KKM (X; Y; Z) =
KKM (X; Z). Also KKM (Y; Z) is a proper subset of S-KKM (X; Y; Z) for any S : X →
2Y and so S-KKM (X; Y; Z) is a very large class of maps which includes other important
classes of multimaps (see [2,3] for examples).

Remark 2.4. Let X be a convex subset of a HausdorH topological space, Y a convex
space, and Z , W topological spaces and S : X → 2Y . If F : S-KKM (X; Y; Z) and
f∈C(Z;W ), then f ◦ F ∈ S-KKM (X; Y;W ) (see [3]).

The following result [2] will be needed in the sequel. Throughout the paper, we
shall assume that f ◦ F is closed whenever f is continuous and F is closed.
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Lemma 2.1. Let C be a nonempty, closed, convex subset of a Hausdor= locally con-
vex space E Suppose s : C → C is surjective and F ∈ s-KKM (C; C; C) is a closed

-condensing map. Then F has a ?xed point in C.

3. Main results

Theorem 3.1. Let 
 be either � or � and C a nonempty, closed, convex subset of a
Banach space E. Suppose s : C → C is surjective and F ∈ s-KKM (C; C; C) is a closed
1-
-contractive map. In addition, assume the following condition holds:{

if {xn} ⊆ C with yn ∈F(xn) for all n and xn − yn → 0

as n → ∞; then there exists an x0 ∈C with x0 ∈F(x0):
Then F has a ?xed point in C.

Proof. Fix v∈C. For each n, de1ne Fn by

Fn(x) = �nv+ (1− �n)F(x);

where {�n} ⊆ (0; 1) with �n → 0 as n → ∞. Consider the mapping gn(y) = �nv +
(1 − �n)y. Then each gn is continuous. Since F ∈ s-KKM (C; C; C), by Remark 2.4,
Fn = gn ◦ F ∈ s-KKM (C; C; C). Since F is closed and gn is continuous, each Fn =
gn ◦ F is closed. Also, each Fn is (1 − �n)-
-contractive and so is 
-condensing. By
Lemma 2.1, each Fn has a 1xed point xn ∈C, i.e., xn ∈ �nu+(1−�n)F(xn) for each n.
Choose yn ∈F(xn) with xn=�nu+(1−�n)yn. It further implies that xn−yn=�n(u−yn) →
0 as F(C) is bounded. By hypothesis, there exists an x0 ∈C with x0 ∈F(x0).

Let C be a convex subset of a HausdorH locally convex space E with 0∈ int(C).
The Minkowski functional p of C is de1ned by

p(x) = inf{r ¿ 0 : x∈ rC}:
The following properties of the Minkowski functional are well known:

(i) p is continuous on E;
(ii) p(x + y)6p(x) + p(y); x; y∈E;
(iii) p(�x) = �p(x); �¿ 0; x∈E;
(iv) 06p(x)¡ 1; if x∈ int(C);
(v) p(x)¿ 1; ifx �∈ JC;
(vi) p(x) = 1; if x∈ @C.

For x∈E, set
dp(x; C) = inf{p(x − y) : y∈C}:

Theorem 3.2. Let C be a closed, convex subset of a Hausdor= locally convex space
E with 0∈C and U a convex open neighborhood of 0. Suppose s : JU ∩ C → JU ∩ C
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is surjective and F ∈ s-KKM ( JU ∩ C; JU ∩ C; C) is a closed 
-condensing map. Then
there exist x0 ∈ JU ∩ C and y0 ∈F(x0) with

p(y0 − x0) = dp(y0; JU ∩ C) = dp(y0; I JU (x0) ∩ C);

where p is the Minkowski functional of U . More precisely, either (i) F has a ?xed
point x0 ∈ JU ∩ C, or (ii) there exist x0 ∈ @C(U ) and y0 ∈F(x0) with

0¡p(y0 − x0) = dp(y0; JU ∩ C) = dp(y0; I JU (x0) ∩ C);

where @C(U ) denotes the boundary of U relative to C.

Proof. Let r : E → JU be de1ned by

r(x) =




x if x∈ JU;
x

p(x)
if x �∈ JU;

that is,

r(x) =
x

max{1; p(x)} for x∈E:

Since 0∈U = int(U ), p is continuous and so r is continuous. Let f be the restriction
of r to C. Since C is convex and 0∈C, it follows that f(C) ⊆ JU ∩C. Also f∈C(C;
JU ∩ C). By Remark 2.4, f ◦ F ∈ s-KKM ( JU ∩ C; JU ∩ C; JU ∩ C). Set G = f ◦ F .
Then G is closed. We now show that G is 
-condensing. Let A be a subset of
JU ∩ C such that 
(A)6
(G(A)): If F(A) ⊆ JU ∩ C, then G(A) ⊆ F(A) and so

(A)6
(G(A))6
(F(A)). This implies that JA is compact since F is 
-condensing.
On the other hand, if F(A) ⊆ C \ JU , then G(A) ⊆ co({0} ∪ F(A)) and so


(A)6
(G(A))6
(co({0} ∪ F(A)))

6
({0} ∪ F(A))

= max{
({0}); 
(F(A))}= 
(F(A));

which gives JA is compact. As a result, G is 
-condensing. Now Lemma 2.1 guarantees
that G has a 1xed point i.e. there exists an x0 ∈ JU ∩ C with x0 ∈G(x0). Then there
exists some y0 ∈F(x0) with x0 = f(y0). We now consider two cases: (i) y0 ∈ JU ∩ C
or (ii) y0 ∈C \ JU .
(i) Suppose y0 ∈ JU ∩ C. Then x0 = f(y0) = y0. Consequently,

p(y0 − x0) = 0 = dp(y0; JU ∩ C)

and x0 is a 1xed point of F . On the other hand, if y0 ∈C \ JU , then

x0 = f(y0) =
y0

p(y0)
:
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As a result, for any x∈ JU ∩ C,

p(y0 − x0) = p
(
y0 − y0

p(y0)

)
=
(
p(y0)− 1
p(y0)

)
p(y0)

= p(y0)− 16p(y0)− p(x) = p((y0 − x) + x)− p(x)

6p(y0 − x):

This implies that

p(y0 − x0) = inf{p(y0 − z) : z ∈ JU ∩ C}= dp(y0; JU ∩ C):

Moreover, p(y0 − x0)¿ 0 since p(y0 − x0) = p(y0)− 1.
Let z ∈ I JU (x0)∩C\( JU∩C). Then there exists y∈ JU and c¿ 1 with z=x0+c(y−x0).

Suppose that

p(y0 − z)¡p(y0 − x0):

The convexity of C implies that (1=c)z+ (1− 1=c)x0 ∈C. Since (1=c)z+ (1− 1=c)x0 =
y∈ JU , it follows that

p(y0 − y) = p
[
1
c
(y0 − z) +

(
1− 1

c

)
(y0 − x0)

]

6
1
c
p(y0 − z) +

(
1− 1

c

)
p(y0 − x0)

¡p(y0 − x0):

This contradicts the choice of y0. As a result, we have

p(y0 − x0)6p(y0 − z) for all z ∈ I JU (x0) ∩ C:

The continuity of p further implies that

p(y0 − x0)6p(y0 − z) for all z ∈ I JU (x0) ∩ C:

Hence

0¡p(y0 − x0) = dp(y0; JU ∩ C) = dp(y0; I JU (x0) ∩ C)

(here we have inequality since x0 ∈ I JU (x0) ∩ C). Suppose x0 ∈U . Then I JU (x0) = E,
which implies dp(y0; I JU (x0) ∩ C) = 0. Hence x0 ∈ @C(U ).

We omit the proof the following result as it can easily be derived using the same
arguments as above.

Theorem 3.3. Let C be a closed, convex subset of a Hausdor= locally space E with
0∈ int(C). Suppose s : C → C is surjective and F ∈ s-KKM (C; C; E) is a closed

-condensing map. Then there exist x0 ∈C and y0 ∈F(x0) with

p(y0 − x0) = dp(y0; C) = dp(y0; IC(x0));
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where p is the Minkowski functional of C in E. More precisely, either (i) F has a
?xed point x0 ∈C, or (ii) there exist x0 ∈ @(C) and y0 ∈F(x0) with

0¡p(y0 − x0) = dp(y0; C) = dp(y0; IC(x0)):

As an immediate corollary, we have the following:

Corollary 3.4. Let E be a normed space. Suppose s : BR → BR is surjective and
F ∈ s-KKM (BR; BR; E) is a closed 
-condensing map. Then there exist x0 ∈BR and
y0 ∈F(x0) with

‖y0 − x0‖= d(y0; BR) = d(y0; IBR(x0)):

More precisely, either (i) F has a ?xed point x0 ∈BR, or (ii). there exist x0 ∈ @(BR)
and y0 ∈F(x0) with

0¡ ‖y0 − x0‖= d(y0; BR) = d(y0; IBR(x0)):

Proof. Since p(x)=‖x‖=R is the Minkowski functional on BR, we now apply Theorem
3.3.

Remark 3.1. Corollary 3.4 extends Theorem 1 of Lin and Park [10] to the class
s-KKM. The result in Lin [9] is also a special case of Corollary 3.4.

If s is the identity 1C , then Theorem 3.3 reduces to the following result.

Corollary 3.5. Let C be a closed, convex subset of a Hausdor= locally convex space
E with 0∈ int(C). Suppose F ∈KKM (C; E) is a closed 
-condensing map. Then there
exist x0 ∈C and y0 ∈F(x0) with

p(y0 − x0) = dp(y0; C) = dp(y0; IC(x0)):

More precisely, either (i) F has a ?xed point x0 ∈C, or (ii) there exist x0 ∈ @(C)
and y0 ∈F(x0) with

0¡p(y0 − x0) = dp(y0; C) = dp(y0; IC(x0)):

Theorem 3.6. Let C be a closed, convex subset of a Hausdor= locally convex space
E with int(C) �= ∅. Suppose s : C → C is surjective and F ∈ s-KKM (C; C; E) is a
closed 
-condensing map. Then for each a∈ int(C), there exist x0 = x0(a)∈C and
y0 ∈F(x0) with

p0(y0 − x0) = dp0 (y0; C) = dp0 (y0; IC(x0));
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where p0 is the Minkowski functional of C − a in E. More precisely, either (i) F
has a ?xed point x0 ∈C, or (ii) there exist x0 ∈ @(C) and y0 ∈F(x0) with

0¡p0(y0 − x0) = dp0 (y0; C) = dp0 (y0; IC(x0)):

Proof. Replacing C, F , and s by Ĉ := C − a, F̂ : Ĉ → 2E : F̂(x− a) = F(x)− a, and
ŝ : Ĉ → Ĉ : ŝ(x− a)= s(x)− a, respectively, we may assume that 0∈ int(C). Now the
result follows immediately from Theorem 3.3.

Theorem 3.7. Let 
 be either � or � and C a nonempty, closed, convex subset of
a Banach space E with 0∈ int(C). Suppose s : C → C is surjective and F ∈ s-KKM
(C; C; E) is a closed 1-
-contractive map. In addition, assume the following condition
holds:{

if {xn} ⊆ C with yn ∈F(xn) for all n and xn − r(yn) → 0

as n → ∞; then there exists an x0 ∈C with x0 ∈F(x0):

Then there exist x0 ∈C and y0 ∈F(x0) with

p(y0 − x0) = dp(y0; C) = dp(y0; IC(x0));

where p is the Minkowski functional of C in E. More precisely, either (i) F has a
?xed point x0 ∈C, or (ii) there exist x0 ∈ @(C) and y0 ∈F(x0) with

0¡p(y0 − x0) = dp(y0; C) = dp(y0; IC(x0)):

Proof. Let r : E → C be as de1ned above. Then r is continuous. Since r(A) ⊆
co({0}∪A) for each subset A of C, it follows that 
(r(A))6
(A) and so G=r ◦F is
1-
-contractive. Also G is closed. By Remark 2.4, G ∈ s-KKM (C; C; C). Now Theorem
3.1 implies that G has a 1xed point x0. Hence, as in Theorem 3.2, there exists y0 with
y0 ∈F(x0) such that

p(y0 − x0) = dp(y0; C) = dp(y0; IC(x0)):

Using approximation results, we now obtain some 1xed point theorems.

Theorem 3.8. Let C be a closed, convex subset of a Hausdor= locally convex space
E with 0∈C and U a convex open neighborhood of 0. Suppose s : JU ∩ C → JU ∩ C
is surjective and F ∈ s-KKM ( JU ∩ C; JU ∩ C; C) is a closed 
-condensing map. If F
satis?es any one of the following conditions for any x∈ @C(U ) \ F(x):

(i) for each y∈F(x), p(y − z)¡p(y − x) for some z ∈ I JU (x) ∩ C;
(ii) for each y∈F(x), there exist � with |�|¡ 1 such that �x+(1−�)y∈ I JU (x)∩C;
(iii) F(x) ⊆ I JU (x) ∩ C;
(iv) F(x) ∩ {�x : �¿ 1}= ∅;
(v) for each y∈F(x), p(y − x) �= p(y)− 1;
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(vi) for each y∈F(x), there exist �∈ (1;∞) such that p�(y)− 16p�(y − x);
(vii) for each y∈F(x), there exist ;∈ (0; 1) such that p;(y)− 1¿p;(y − x);

then F has a ?xed point.

Proof. An application of Theorem 3.2 yields that either

(1) F has a 1xed point in JU ∩ C or
(2) there exist x0 ∈ @C(U ) and y0 ∈F(x0) with x0 = f(y0) such that

0¡p(y0)− 1 = p(y0 − x0) = dp(y0; JU ∩ C) = dp(y0; I JU (x0) ∩ C);

where p is the Minkowski functional of U and f is the restriction of the continuous
retraction r to C.
Suppose F satis1es condition (i). Assume (2) holds (with x0 and y0 as described

above) and x0 �∈ F(x0). Then, by condition (i), we have p(y0 − z)¡p(y0 − x0) for
some z ∈ I JU (x0) ∩ C. This contradicts the choice of x0. Hence F has a 1xed point.
Suppose F satis1es condition (ii). Assume (2) holds (with x0 and y0 as described

above) and x0 �∈ F(x0). Then, by condition (ii), there exists � with |�|¡ 1 such that
�x0 + (1− �)y0 ∈ I JU (x0) ∩ C. This implies that

p(y0 − x0)6p(y0 − (�x0 + (1− �)y0)) = p(�(y0 − x0))

= |�|p(y0 − x0)¡p(y0 − x0);

which is a contradiction. Hence F has a 1xed point.
The proof for condition (iii) is obvious.
Suppose F satis1es condition (iv). Assume (2) holds (with x0 and y0 as described

above) and x0 �∈ F(x0). Then, by condition (iv), �x0 �= y0 for each �¿ 1. Notice that
x0 = f(y0) = y0=p(y0) and so y0 = �0x0 with �0 = p(y0)¿ 1. Hence F has a 1xed
point.
Suppose F satis1es condition (v). Assume (2) holds (with x0 and y0 as described

above) and x0 �∈ F(x0). Then, by condition (v), p(y0 − x0) �= p(y0)− 1. But we have
p(y0 − x0) = p(y0)− 1. Hence F has a 1xed point.
Suppose F satis1es condition (vi). Assume (2) holds (with x0 and y0 as described

above) and x0 �∈ F(x0). Then condition (vi) implies that there exists �∈ (1;∞) with
p�(y0)− 16p�(y0 − x0). Let �0 = 1=p(y0). Then �0 ∈ (0; 1) and

(p(y0)− 1)�

p�(y0)
= (1− �0)� ¡ 1− ��0

6
p�(y0)− 1
p�(y0)

6
p�(y0 − x0)
p�(y0)

:

Thus p(y0 − x0)¿p(y0)− 1. This contradicts p(y0 − x0) = p(y0)− 1.
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Finally suppose F satis1es condition (vii). Then, as above (see the proof of (vi)),
it can be seen that F has a 1xed point.

Remark 3.2. We have obtained a Leray–Schauder type result as an application of
Theorem 3.2 (see Theorem 3.8(iv)). This was originally proved by Chang et al. [2].
Theorem 3.8 contains Corollary 4.1 of Chang et al. [2] as a special case.

Using Theorem 3.3 and following the same arguments as above, we get the following
result.

Theorem 3.9. Let C be a closed, convex subset of a Hausdor= locally convex space
E with 0∈ int(C). Suppose s : C → C is surjective and F ∈ s-KKM (C; C; E) is a
closed 
-condensing map. If F satis?es any one of the following conditions for
any x∈ @(C) \ F(x):

(i) for each y∈F(x), p(y − z)¡p(y − x) for some z ∈ IC(x);
(ii) for each y∈F(x), there exist � with |�|¡ 1 such that �x + (1− �)y∈ IC(x);
(iii) F(x) ⊆ IC(x);
(iv) F(x) ∩ {�x : �¿ 1}= ∅;
(v) for each y∈F(x), p(y − x) �= p(y)− 1;
(vi) for each y∈F(x), there exist �∈ (1;∞) such that p�(y)− 16p�(y − x);
(vii) for each y∈F(x), there exist ;∈ (0; 1) such that p;(y)− 1¿p;(y − x);

then F has a ?xed point.

Corollary 3.10. Let E be a normed space. Suppose s : BR → BR is surjective and
F ∈ s-KKM (BR; BR; E) is a closed 
-condensing map. If F satis?es any one of the
following conditions for any x∈ @(BR) \ F(x):

(i) for each y∈F(x) ‖y − z‖¡ ‖y − x‖ for some z ∈ IBR(x);
(ii) for each y∈F(x), there exist � with |�|¡ 1 such that �x + (1− �)y∈ IBR(x);
(iii) F(x) ⊆ IBR(x);
(iv) F(x) ∩ {�x : �¿ 1}= ∅;
(v) for each y∈F(x), ‖y − x‖ �= ‖y‖ − R;
(vi) for each y∈F(x), there exist �∈ (1;∞) such that ‖y‖� − R6 ‖y − x‖�;
(vii) for each y∈F(x), there exist ;∈ (0; 1) such that ‖y‖; − R¿ ‖y − x‖;;

then F has a ?xed point.

Remark 3.3. Corollary 3.10 generalizes Theorem 2 of Lin and Park [10] as well as a
result of Lin [9].

Corollary 3.11. Let C be a closed, convex subset of a Hausdor= locally convex
space E with 0∈ int(C). Suppose F ∈KKM (C; E) is a closed 
-condensing map. If F
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satis?es any one of the following conditions for any x∈ @(C) \ F(x):

(i) for each y∈F(x), p(y − z)¡p(y − x) for some z ∈ IC(x);
(ii) for each y∈F(x), there exist � with |�|¡ 1 such that �x + (1− �)y∈ IC(x);
(iii) F(x) ⊆ IC(x);
(iv) F(x) ∩ {�x : �¿ 1}= ∅;
(v) for each y∈F(x), p(y − x) �= p(y)− 1;
(vi) for each y∈F(x), there exist �∈ (1;∞) such that p�(y)− 16p�(y − x);
(vii) for each y∈F(x), there exist ;∈ (0; 1) such that p;(y)− 1¿p;(y − x);

then F has a ?xed point.

Applying Theorem 3.6, we have the following 1xed point result which includes
Corollary 4.2 of Chang et al. [2] as a special case.

Theorem 3.12. Let C be a closed, convex subset of a Hausdor= locally convex space
E with int(C) �= ∅. Suppose s : C → C is surjective and F ∈ s-KKM (C; C; E) is a
closed 
-condensing map. If F satis?es any one of the following conditions for any
x∈ @(C) \ F(x):

(i) for each y∈F(x), p0(y − z)¡p0(y − x) for some z ∈ IC(x);
(ii) for each y∈F(x), there exist � with |�|¡ 1 such that �x + (1− �)y∈ IC(x);
(iii) F(x) ⊆ IC(x);
(iv) F(x) ∩ {�x : �¿ 1}= ∅;
(v) for each y∈F(x), p0(y − x) �= p0(y)− 1;
(vi) for each y∈F(x), there exist �∈ (1;∞) such that p�0(y)− 16p�0(y − x);
(vii) for each y∈F(x), there exist ;∈ (0; 1) such that p;0(y)− 1¿p;0(y − x);

then F has a ?xed point.

We now state an application of Theorem 3.7.

Theorem 3.13. Let 
 be either � or � and C a nonempty, closed, convex sub-
set of a Banach space E with 0∈ int(C). Suppose s : C → C is surjective and
F ∈ s-KKM (C; C; E) is a closed 1-
-contractive map. In addition, assume the follow-
ing condition holds:{

if {xn} ⊆ C with yn ∈F(xn) for all n and xn − r(yn) → 0

as n → ∞; then there exists an x0 ∈C with x0 ∈F(x0):
If F satis?es any one of the following conditions for any x∈ @(C) \ F(x):

(i) for each y∈F(x), p(y − z)¡p(y − x) for some z ∈ IC(x);
(ii) for each y∈F(x), there exist � with |�|¡ 1 such that �x + (1− �)y∈ IC(x);
(iii) F(x) ⊆ IC(x);
(iv) F(x) ∩ {�x : �¿ 1}= ∅;
(v) for each y∈F(x), p(y − x) �= p(y)− 1;
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(vi) for each y∈F(x), there exist �∈ (1;∞) such that p�(y)− 16p�(y − x);
(vii) for each y∈F(x), there exist ;∈ (0; 1) such that p;(y)− 1¿p;(y − x);

then F has a ?xed point.

Following the ideas above, it is possible to obtain other approximation and 1xed
point theorems in Hilbert spaces (here the retraction r is replaced by the proximity
map). These theorems generalize Theorems 3 and 4 of Lin and Park [10].

Theorem 3.14. Let C be a nonempty, closed, convex subset of a Hilbert space H .
Suppose s : C → C is surjective and F ∈ s-KKM (C; C; H) is a closed 
-condensing
map. Then there exist x0 and y0 ∈F(x0) with

‖y0 − x0‖= d(y0; C) = d(y0; IC(x0));

where ‖:‖ is the norm induced by the inner product. More precisely, either (i) F has
a ?xed point x0 ∈C, or (ii) there exist x0 ∈ @(C) and y0 ∈F(x0) with

0¡ ‖y0 − x0‖= d(y0; C) = d(y0; IC(x0)):

Proof. Let r : H → C be the proximity map. Then r is nonexpansive and so G= r ◦F
is 
-condensing. By Remark 2.4, G ∈ s-KKM (C; C; C). Now Lemma 2.1 guarantees
that G has a 1xed point i.e. there exists an x0 ∈C with x0 ∈G(x0). Then there exists
some y0 ∈F(x0) with x0 = r(y0). Thus

‖x0 − y0‖= ‖r(y0)− y0‖= inf
y∈C

‖y0 − y‖= d(y0; C):

As in the proof of Theorem 3.2, we can get

‖x0 − y0‖= d(y0; C) = d(y0; IC(x0)):

We only state the following result and leave the obvious details to the reader.

Theorem 3.15. Let C be a nonempty, closed, convex subset of a Hilbert space H .
Suppose s : C → C is surjective and F ∈ s-KKM (C; C; H) is a closed 
-condensing
map. If F satis?es any one of the following conditions for any x∈ @(C) \ F(x):

(i) for each y∈F(x), ‖y − z‖¡ ‖y − x‖ for some z ∈ IC(x);
(ii) for each y∈F(x), there exist � with |�|¡ 1 such that �x + (1− �)y∈ IC(x);
(iii) F(x) ⊆ IC(x);

then F has a ?xed point.
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