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Abstract
Motivation: Regulatory DNA elements are associated with DNase I hypersensitive sites

(DHSs). Accordingly, identi�cation of DHSs will provide useful insights for in-depth

investigation into the function of noncoding genomic regions.

Results: In this study, using the strategy of ensemble learning framework, we

proposed a new predictor called iDHS-EL for identifying the location of DHS in human

genome. It was formed by fusing three individual Random Forest (RF) classi�ers into

an ensemble predictor. The three RF operators were respectively based on the three

special modes of the general pseudo nucleotide composition (PseKNC): (i) kmer, (ii)

reverse complement kmer and (iii) pseudo dinucleotide composition. It has been

demonstrated that the new predictor remarkably outperforms the relevant state-of-

the-art methods in both accuracy and stability.

Availability and Implementation: For the convenience of most experimental

scientists, a web server for iDHS-EL is established at

http://bioinformatics.hitsz.edu.cn/iDHS-EL, which is the �rst web-server predictor

ever established for identifying DHSs, and by which users can easily get their desired

results without the need to go through the mathematical details. We anticipate that

iDHS-EL will become a very useful high throughput tool for genome analysis.

Contact:bliu@gordonlifescience.org or bliu@insun.hit.edu.cn

Supplementary information:Supplementary data are available at Bioinformatics online.
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Issue Section:  SEQUENCE ANALYSIS

1 Introduction

In genetics, DNase I hypersensitive sites (DHSs) are the regions of chromatin that are

sensitive to cleavage by the DNase I enzyme. In these speci�c regions of the genome,

chromatin has lost its condensed structure. As a consequence, the corresponding DNA

region will become more exposing and easier to be accessible by enzymes, such as

DNase I, and hence enhance its degradation. These accessible chromatin zones are

functionally related to transcriptional activity because of the necessity to bind with

proteins, such as transcription factors. Since its discovery about 30 years ago (Wu et

al., 1979), DHSs have been used as the markers for detecting the regulatory DNA

regions.

In general, these speci�c regions are usually nucleosome-free and associated with a

wide variety of genomic regulatory elements, such as promoters, enhancers,

insulators, silencers and suppressors (Chen et al., 2016b; Felsenfeld, 1992; Felsenfeld

and Groudine, 2003; Gross and Garrard, 1988; Liu et al., 2016b). Accordingly, one

e�ective approach for discovering functional DNA elements from the noncoding

sequences is to identify DHSs.

The gold-standard approach for identifying DHS is the Southern blot technique, but

it is a tricky, time-consuming and inaccurate to acquire the DHS information by

using the Southern blot approach (Crawford et al., 2006). In 2010, by combining the

DNase I digestion and high throughput sequencing technology, the DNase-seq

technique was proposed (Song and Crawford, 2010), leading to a remarkable enhance

in resolution. Unfortunately, there is no e�ective methodology for analysing the

DNase-seq data (Madrigal and Krajewski, 2012). Therefore, one has to resort to the

computational approaches for identifying DHSs. In fact some e�orts have been made

in this regard. For example, Noble et al. (2005) proposed a predictor based on the

Support Vector Machine (SVM) in which the nucleotide composition was used to

formulate the feature vector for predicting DHSs in K562 cell line. Recently, by using

the pseudo nucleotide composition (PseKNC) (Chen et al., 2014c, 2015; Liu et al.,

2015d), which was developed based on the idea of pseudo amino acid composition for

https://academic.oup.com/bioinformatics/search-results?f_TocHeadingTitle=SEQUENCE%20ANALYSIS
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proteins (Chou, 2001a), Feng et al. (2014) proposed a more powerful predictor to

identify DHSs by incorporating both the local and global sequence-order e�ects of

DNA.

Although the aforementioned computational approaches yielded quite encouraging

results, and they did stimulate the development of this area, some further work is

needed due to the following reasons. (i) These existing methods were based on

di�erent features extracted from a DNA sequence, and hence lacking the elegance

and e�ciency of uniform treatment; in other words, a new framework is needed to

combine them into one framework. (ii) None of these methods has ever provided a

web-server or stand-alone tool, and hence their practical usage value is quite

limited, particularly for the majority of experimental biologists (Chou, 2015).

This study was initiated in an attempt to address these shortcomings by developing a

more powerful and also more uniform predictor for identifying DHSs. As manifested

in a series of recent publications (Chen et al., 2016a; Jia et al., 2016a,b,c; Liu et al.,

2015b,f, 2016a,b,c; Xiao et al., 2015), to develop a really useful sequence-based

statistical predictor for a biological system and also to make the developing process

logically clearer and easier to follow, according to Chou's �ve-step guidelines (Chou,

2011) we should make the following �ve procedures crystal clear: (i) benchmark

dataset; (ii) sample representation; (iii) operation engine; (iv) cross validation; (v)

web-server. Below, let us describe how to deal with these steps one-by one.

2 Materials and Methods

2.1 Benchmark datasets

To develop a statistical predictor, the �rst important thing is to establish a reliable

and stringent benchmark dataset for training and testing the predictor. In this study,

the benchmark dataset constructed by Noble et al. (2005) was adopted; it can be

formulated as  

 S 

S = ∪S
+

S
−

(1)

+
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where the positive subset contains 280 DHS sequences collected from the human
genome, the negative subset  contains 737 non-DHS sequences, and  denotes the
‘union’ in the set theory. For readers’ convenience, the benchmark dataset are given
in Supplementary Material.

2.2 Feature description

Three di�erent features are used to construct three kinds of predictors. They are (i)

kmer (Lee et al., 2011), (ii) reverse complement kmer (Gupta et al., 2008) and (iii)

pseudo dinucleotide composition (PseDNC) (Chen et al., 2013). These features can be

used to re�ect the characteristics of a DNA sequence from its di�erent angles, as

elaborated below.

2.2.1 Kmer

For a DNA sequence  

where  

(i = 1, 2, and  is a symbol in the set theory meaning ‘member of’. If using
kmer (Lee et al., 2011) or k-tuple nucleotide composition to represent the DNA
sequence, we have (Chen et al., 2014c; Liu et al., 2015c)  

where  (  is the occurrence frequency of the u-th k-tuple
nucleotide in the DNA sequence and is the transpose operator. For example, when 

Equation 4 will be reduced to the case of 2mer; i.e.  

 

S
+

S
− ∪

D = R1R2R3R4R5R6R7⋯ RL

(2)

∈ {A (adenine), C (cytosine), G (guanine), T (thymine)}Ri

(3)

⋯ ,  L)  ∈

D = [ ]f kmer
1 f kmer

2 f kmer
3 f kmer

4 ⋯ f kmer
4k

T

(4)

f kmer
u u = 1,  2,  ⋯ ,   )4k

T 
k = 2,  

D = [ ]f(AA) f(AC) f(AG) f(AT) ⋯ f(TT)
T

https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/32/16/10.1093_bioinformatics_btw186/2/btw186_Supplementary_Data.zip?Expires=1499933889&Signature=K4a0D7mefGwGSxxc7gR-Erqf1GD~TfEOo4jKbjfj6uHZqiEp~4MPLCY-uDZnibKRMx0LwZ9pygBC~zaaqRAigUhmyaB3gRrNz1Z4WN0QvKsYC5RuBLcbu7adYmuhPNkvo5d1r0GQRIv-5RynfiebHWTAzA1aG~5Xo4jqRzEa-OaTRF~5S7VnVNEEDXEExrJMqHatcKxyEWfgk2VXwQKuUptYv4ZclEYheZreE1Bcq7fnQPl2r~1aJrU6RCBfrSFfyccVg~MNBvy516lvJTTEgAE94nILTvgdhk~Kvf~yh~a2OZFHiSA00OIDPCq9NDm~VzUsGvGpv2gPz5EUyx5u3g__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q
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2.2.2 Reverse complement kmer

The reverse complement kmer (Gupta et al., 2008; Noble et al., 2005) is a variant of

the basic kmer, in which the kmers are not expected to be strand-speci�c, so reverse

complements are degenerated into a single feature. For example, if k = 2, there are

totally 16 basic dinucleotides (‘AA’, ‘AC’, ‘AG’, ‘AT’, ‘CA’, ‘CC’, ‘CG’, ‘CT’, ‘GA’, ‘GC’,

‘GG’, ‘GT’, ‘TA’, ‘TC’, ‘TG’, ‘TT’), but by removing the reverse complement 2mers,

there are only 10 dinucleotides in the reverse compliment kmer approach (‘AA’, ‘AC’,

‘AG’, ‘AT’, ‘CA’, ‘CC’, ‘CG’, ‘GA’, ‘GC’, ‘TA’). For more information of this approach,

please refer to (Gupta et al., 2008; Noble et al., 2005). Accordingly, instead of

Equation 5, we have  

 

where  (  is the occurrence frequency of the u-th reverse
complement 2-tuple nucleotide in the DNA sequence.

2.2.3 Pseudo dinucleotide composition

PseDNC is an approach by incorporating the contiguous local sequence-order

information (via 2mer) and the global sequence-order pattern (via the concept of

pseudo components (Chou, 2001a)) into the feature vector of the DNA sequence (Chen

et al., 2013).

According to PseDNC (Chen et al., 2014c), the DNA sequence D of Equation 2 can be

formulated by a vector given by  

where  

= [ f 2mer
1 f 2mer

2 f 2mer
3 f 2mer

4 ⋯ ]f 2mer
16

T

(5)

D  =  [ ]f(AA) f(AC) f(AG) f(AT) ⋯ f(TA)
T

= [ ]fRC2mer
1 fRC2mer

2 fRC2mer
3 fRC2mer

4 ⋯ fRC2mer
10

T

(6)

fRC2mer
u u = 1,  2,  ⋯ ,  10)

D = [d1 d2 ⋯ d16 d16+1 ⋯ d16+λ]T

(7)
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where fk(k = 1, 2,…,16) is the normalized occurrence frequency of dinucleotide in the
DNA sequence; the parameter λ is an integer, representing the highest counted rank
(or tier) of the correlation along a DNA sequence; w is the weight factor ranged from
0 to 1; θj (j = 1, 2,…,λ) is called the j-tier correlation factor that re�ects the sequence-
order correlation between all the most contiguous dinucleotides along a DNA
sequence, which is de�ned by Chen et al. (2014c):  

where the correlation function is given by  

where  is the number of physicochemical properties considered in this study
(see Table 1);  and  are the normalized numerical values of
the u-th physicochemical index for the dinucleotides  and ,
respectively.

Table 1.

The normalized values for the six DNA dinucleotide physicochemical properties

Dinucleotide   Physicochemical property

 

Roll  Tilt  Twist  Slide  Shi�  Rise 

=dk

⎧
⎩⎨
⎪⎪⎪
⎪⎪⎪

(1 ≤ k ≤ 16)
fk

+w∑16
i=1 fi ∑λ

j=1 θj

 (17 ≤ k ≤ 16 + λ)wθk−16

+w∑16
i=1 fi ∑λ

j=1 θj

(8)

⎧

⎩
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

= Θ ( , )θ1
1

L−2 ∑
L−2
i=1 RiRi+1 Ri+1Ri+2

= Θ ( , )θ2
1

L−3 ∑
L−3
i=1 RiRi+1 Ri+2Ri+3

= Θ ( , )θ3
1

L−4 ∑
L−4
i=1 RiRi+1 Ri+3Ri+4

 ⋮

= Θ ( , )θλ
1

L−1−λ
∑L−1−λ

i=1 RiRi+1 Ri+λRi+λ+1

(λ < L)

(9)

Θ ( , ) =RiRi+1 RjRj+1
1
μ
∑μ

μ=1 [ ( ) − ( )]Pu RiRi+1 Pu RjRj+1
2

(10)

μ = 6
( )Pu RiRi+1 ( )Pu RjRj+1

RiRi+1 RjRj+1

a
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AA  0.11  0.27  0.5  0.06  1.59  −0.11 

AC  1.29  0.80  0.5  1.5  0.13  1.04 

AG  −0.24  0.09  0.36  0.78  0.68  −0.62 

AT  2.51  0.62  0.22  1.07  −1.02  1.17 

CA  −0.62  −0.27  −1.36  −1.38  −0.86  −1.25 

CC  −0.82  −0.09  1.08  0.06  0.56  0.24 

CG  −0.29  −0.44  −1.22  −1.66  −0.82  −1.39 

CT  −0.24  0.09  0.36  0.78  0.68  −0.62 

GA  −0.39  0.27  0.5  −0.08  0.13  0.71 

GC  0.65  1.33  0.22  −0.08  −0.35  1.59 

GG  −0.82  0.09  1.08  0.06  0.56  0.24 

GT  1.29  0.80  0.5  1.5  0.13  1.04 

TA  −1.51  −0.44  −2.37  −1.23  −2.24  −1.39 

TC  −0.39  0.27  0.5  −0.08  0.13  0.71 

TG  −0.62  −0.27  −1.36  −1.38  −0.86  −1.25 

TT  0.11  0.27  0.5  0.06  1.59  −0.11 

See the main text for further explanation.

The aforementioned three types of feature vectors are actually three special modes of

the general PseKNC (Chen et al., 2015c), as can be formulated as  

where Z is the dimension of the general PseKNC vector; e.g.  

a

D = [   ⋯     ⋯   ]ϕ1ϕ2 ϕu ϕZ
T

(11)
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Therefore, they can be easily generated by the web-server called ‘Pse-in-One’ (Liu et
al., 2015e) established very recently.

2.3 Random Forests algorithm

Widely used in various areas of computational biology [e.g. (Jia et al., 2015a,b,

2016a,b,c; Kandaswamy et al., 2011; Lin et al., 2011; Pugalenthi et al., 2012)], the

random forests (RF) algorithm is a powerful algorithm. Its detailed formulation has

been clearly described in Breiman (2001), and hence there is no need to repeat here.

As shown above, by using 2mer, RC2mer, and PseDNC, the sample of Equation 2 can

be de�ned by three di�erent PseKNC vectors, as indicated in Equations 5–7,

respectively. Accordingly, we have three di�erent basic RF predictors; i.e.  

2.4 Ensemble random forests

As demonstrated by a series of previous studies, such as signal peptide prediction

(Chou and Shen, 2007c; Shen and Chou, 2007c), membrane protein type classi�cation

(Chou and Shen, 2007a; Shen and Chou, 2007d), protein subcellular location

prediction (Chou and Shen, 2006; Shen and Chou, 2007b), protein fold pattern

recognition (Shen and Chou, 2006), enzyme functional classi�cation (Shen and Chou,

2007a), protein-proteins interaction prediction (Jia et al., 2015a) and protein-protein

binding site identi�cation (Jia et al., 2015b), the ensemble predictor formed by fusing

an array of individual predictors via a voting system can generate much better

prediction quality.

Here, the ensemble predictor is formed by fusing the aforementioned three di�erent

individual RF predictor of Equation 13; i.e.  

Z =
⎧
⎩⎨
⎪
⎪

16        for 2mer vector 

10        for RC2mer vector 
16+λ    for PseDNC vector 

(12)

 
⎧
⎩⎨
⎪
⎪

RF(1), when the sample is based on 2mer or Eq.5 

RF(2), when the sample is based on RC2mer or Eq.6 

RF(3), when the sample is based on PseDNC or Eq.7 
(13)
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where  denotes the ensemble predictor, and the symbol  denotes the fusing
operator (Chou and Shen, 2007b). In this study, the concrete fusion process can be
formulated as follows.

For a given DNA sequence sample D (see Eq.2), suppose  

where the symbol  is an action operator (Chou and Shen, 2007b) meaning using
RF(i) to identify the query sequence D, and  is the probability thus obtained for the
sample query sample D belonging to the DHS sequence. De�ne  

where Fi is the fractional factor, and their optimal values were determined via the
grid search as given by  

Thus, we have  

The predictor thus established is called iDHS-EL, where ‘i’ stands for ‘identify’, ‘DHS’

for ‘DNase I hypersensitive site’ and ‘EL’ for ‘ensemble learning’. To provide an

intuitive picture, a �owchart is provided in Figure 1 to illustrate the prediction

process of iDHS-EL.

= RF(1)∀ RF(2)∀ RF(3) = RF(i)RFE ∀3
i=1

(14)

RFE ∀

RF(1) ▹ D =   (i = 1,  2,  3)Pi

(15)

▹

 Pi

Y = 1
3 ∑3

i=1 FiPi

(16)

⎧
⎩⎨
⎪
⎪

= 0.05 F1

= 0.90 F2

= 0.05 F3
(17)

D ∈ {DHS,         if Y ≥0.5 

non-DHS,   otherwise
(18)

Fig. 1.

Article Navigation
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3 Results and discussion

As pointed out in Section 1, among the �ve guidelines in developing a useful

predictor, one of them is how to objectively evaluate its anticipated success rates

(Chou, 2011). To ful�l this, the following two things need to consider: one is what

metrics should be used to measure the predictor’s quality; the other is what kind of

test method should be taken to derive the metrics rates. Below, let us to address such

two problems.

3.1 Metrics used to reflect the success rates

A set of four metrics are usually used in literature to measure the quality of a

predictor: (i) overall accuracy or Acc; (ii) Mathew’s correlation coe�cient or MCC;

View large Download slide

The flowchart to show how the iDHS-EL predictor works. The three operation engines ,  and 
are based on the 2mer, RC2mer and PseDNC feature vectors, respectively. See Equations 5–7 and the relevant
text for further explanation

RF1 RF2 RF3
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https://oup.silverchair-cdn.com/DownloadFile/DownloadImage.aspx?image=https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/32/16/10.1093_bioinformatics_btw186/2/btw186f1p.gif?Expires=1499933889&Signature=NozAdMGcuLi4XkF4kk6gP12OLlLS4wshS7AsLkpYkfpRxHtKY2TegqgaJsMIfNU18-yRu45SzEiXwTIr2byMAmP516zjrp4QHSq89oXICpAK0Q5fqhdPBOnuwHMQ~Qj8ZZwo~N~OXJTIcJ6Tekdlnl3JILpK7IjoXAK25icpBaOvmTM6JmF0dQRMVqiRXDN4qSI-J9ZVsAojFri2tjVAhFOm1uZOAj9ZDV-joLC86WDLTiI2hsM3a9KfpxeDBXQru03NNRHF5kdiqLekIwZ9TWOkyClyIQh3FGfG~5ax0HXp5-aySyWUAiPFcKGCijiwNXhnpSmVu~n6Aet~vJ66lA__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q&sec=84768978&ar=2240358&xsltPath=~/UI/app/XSLT&imagename=


7/12/2017 iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning fr…

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw186 11/174

Skip to Main Content

(iii) sensitivity or Sn and (iv) speci�city or Sp (Chen et al., 2007). But the four metrics

have the following two problems.

First, they are seriously a�ected by the imbalance degree of a benchmark dataset  as

de�ned by  

When  the benchmark dataset is completely balanced; when 
it is negatively imbalanced; when  it is positively imbalanced. The larger
the , the more skewed the benchmark dataset will be. For the case of this study,

 and  (see Eq. 1 and Supplementary Material), we have 
 meaning that the dataset is very skewed in favour to the negative

case. To make the performance measurement more objectively re�ect a prediction
method for a system with high imbalance degree, two additional metrics have been
incorporated. One is the product of sensitivity Sn and speci�city Sp (Jin and
Dunbrack, 2005), denoted here as Pt; the other is the property excess (Yang et al.,
2005) denoted here as Py (Jin and Dunbrack, 2005).

Second, the conventional formulations for the four metrics are not intuitive, and

most experimental scientists feel hard to understand them, particularly for the MCC.

To overcome this problem, let us adopt the formulations proposed in Chen et al.

(2013) and Xu et al. (2013) based on the symbols used by Chou (2001b) in studying the

signal peptides.

Thus, we �nally have a set of six new metrics as given below  

S

P (S) = =Number of samples in S+

Number of samples in S−

N( )S−

N( )S+

(19)

P (S) = 1, S  P (S) > 1,
P (S) < 1,

P (S)
N ( ) = 737S

− N ( ) = 280S
+

P (S) ≈ 2.63,
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where  represents the total number of true-phosphorylation samples
investigated, whereas  the number of phosphorylation samples incorrectly
predicted to be of false- phosphorylation sample;  the total number of false-
phosphorylation samples, whereas  the number of false-phosphorylation
samples incorrectly predicted to be of true-phosphorylation sample.

According to Equation 20, the following are crystal clear. (i) When  meaning

none of the DHS samples is incorrectly predicted to be of non-DHS sample, we have

the sensitivity ; whereas  meaning that all the DHS samples are

incorrectly predicted to be of non-DHS sample, we have the sensitivity . (ii)

When  meaning none of the non-DHS samples is incorrectly predicted to be

of DHS sample, we have the speci�city ; whereas  meaning that

all the non-DHS samples are incorrectly predicted to be of DHS sample, we have the

speci�city (iii) When  meaning that none of the DHS

samples in the positive dataset and none of the non-DHS samples in the negative

dataset is incorrectly predicted, we have the overall accuracy  and 

; whereas and  meaning that all the DHS samples in the

positive dataset and all the DHS samples in the negative dataset are incorrectly

predicted, we have the overall accuracy  and . (iv) When 

 and , we have  and  meaning no

better than random guessing.

As we can see from the above discussion, the set of metrics formulated in Equation

20 has made the meanings of sensitivity, speci�city, overall accuracy, and MCC much

⎧
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more intuitive and easier-to-understand, particularly for the meaning of MCC, as

concurred and adopted by many authors in a series of recent publications [e.g. (Chen

et al., 2014a,b; Ding et al., 2014; Jia et al., 2015a; Lin et al., 2014, 2015a; Xiao et al.,

2015)].

Note that, of the six metrics in Equation 20, the most important are the Pt and Py in

dealing with a system in which the number of negative samples is overwhelmingly

greater than that of positive samples, as elaborated in Jin and Dunbrack (2005) and

Yang et al. (2005). The metrics Acc and MCC re�ect the overall accuracy of a predictor

and its stability. The metrics Sn and Sp are used to measure a predictor from two

opposite angles. When, and only when, both Sn and Sp of the predictor A are higher

than those of the predictor B, we can say A is better than B.

Also, it is instructive to point out that the set of equations given in Equation 20 is

valid for the single-label systems only. As for the multi-label systems existing in the

system biology (Chou et al., 2012; Lin et al., 2013; Xiao et al., 2011) and system

medicine (Xiao et al., 2013), a completely di�erent set of metrics is needed as

elucidated in Chou (2013).

3.2 Cross-validation

With a set of intuitive evaluation metrics clearly de�ned, the next step is what kind of

validation method should be adopted to derive the metrics values.

The following three cross-validation methods are often used in literature: (i)

independent dataset test, (ii) subsampling (or K-fold cross-validation) test and (iii)

jackknife test (Chou and Zhang, 1995). Of these three, however, the jackknife test is

deemed the least arbitrary that can always yield a unique outcome for a given

benchmark dataset as elucidated in Chou (2011). Accordingly, the jackknife test has

been widely recognized and increasingly used by investigators to examine the quality

of various predictors [e.g. (Ahmad et al., 2015; Chou and Cai, 2005; Dehzangi et al.,

2015; Khan et al., 2015; Kumar et al., 2015; Liu et al., 2015e; Nanni et al., 2014; Shen

and Chou, 2007e)].

In this study, however, to reduce the computational time, we adopted the 5-fold

cross-validation method, as done by many investigators with RF as the prediction

engine. To do this, we �rst randomly divided the benchmark dataset  of Equation 1S
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into �ve groups that they were approximately equal to each other in the size of their

subsets, as formulated below  

where  

with  

where  denotes the number of samples (or cardinalities) in  and so forth.
Actually, Equations 21–23 can also be formulated as  

where the symbol  means that the divided �ve benchmark datasets in Equation 21
are about the same in size, and so are their subsets (Jia et al., 2016a). Thus, each of
the �ve sub-benchmark datasets was singled out one-by-one and tested by the
model trained with the remaining four sub-benchmark datasets. The cross-
validation process was repeated for �ve times, with their average as the �nal
outcome. In other words, during the process of 5-fold cross-validation, both the
training dataset and testing dataset were actually open, and each sub-benchmark
datasets was in turn moved between the two. The 5-fold cross-validation test can
exclude the ‘memory’ e�ect, just like conducting 5 di�erent independent dataset
tests.

3.3 Comparison with the existing methods

Listed in Table 2 are the 5-fold cross-validation results by iDHS-EL on the benchmark

dataset of Equation 1 (see Supplementary Material). For facilitating comparison,

listed in that table are also the corresponding results obtained by the SVM-RevcKmer

predictor (Noble et al., 2005) and SVM-PseDNC predictor (Feng et al., 2014),
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respectively. From the table, we can see the following. (i) Among the three predictors

the newly proposed one achieved the highest success rates in both Pt and Py, the two

most important metrics used to measure the quality of a predictor as elucidated in

the follow-up text to Equation 20. (ii) Although the Sp rate by the proposed predictor

was slightly (2.04%) lower than that by SVM-RevcKmer, its Sp rate was 5.71% higher

than that by SVM-RevcKmer. As mentioned in Section 3.1, the two metrics are used to

measure a predictor from two opposite angles, and they are constrained with each

other (Chou 1993). Therefore, it is meaningless to use only one of the two for

comparing the quality of two predictors. In other words, a meaningful comparison in

this regard should count the rates of both Sn and Sp, or even better, the rate of their

combination that is none but Pt and Py. As shown in Table 2, the Pt and Py rates

achieved by iDHS-EL are remarkably higher than those by the existing predictors.

Table 2.

A comparison of the proposed predictor with the existing ones via the 5-fold cross-validation on a same
benchmark dataset of Supplementary Material S1

Predictor  Sn  (%)  Sp (%)  Acc (%)  MCC (%)  Pt (%)  Py (%) 

SVM-RevcKmer   65.36  92.81  85.25  0.616  60.66  58.17 

SVM-PseDNC   61.07  92.26  83.68  0.571  56.34  53.33 

iDHS-EL   64.64  94.30  86.14  0.636  64.51  61.84 

See Equation 20 for the definition of the metrics.

The prediction method developed by (Noble et al. 2005).

The prediction method developed by Feng et al. (2014).

The prediction method proposed in this paper.

3.4 Feature analysis

RF is a combination of decision trees, which have the ability to select important ones

from many features and ignore others. Furthermore, because decision trees generate

explicit models describing the relationship between features and the predictions,

a a a a a a

b

c

d

a

b

c

d
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which facilities the interpretation of the models. A measure of how each feature

contributes to the prediction can be calculated in the training process. A random

noise value is used to replace a feature. If the performance is obviously degraded, it

means that this feature contribute to the prediction. On the other hand, if the

performance is stable, it means that this feature is irrelevant. Thus, we can calculate

each relative importance of features according to the following procedure (Jiang et al.,

2007). For each tree, the average prediction accuracy of the OOB (Out Of Bag) portion

of the data is calculated. For each feature, replace its value with random noise, and

then the average accuracy is recalculated. Finally, the di�erence between the two

accuracies is then averaged over all trees, and normalized by the standard error. As a

result, the mean decrease accuracy represents the relative importance of each feature.

As is shown in Table 3, it lists the top 10 most important features of the three

individual RF classi�ers (see Eq. 13). From the table, we can see the following. (i)

Among the three RF classi�ers, there are some common important features, such as

CG, GC, CA, which are fully consistent with previous studies (Wang et al., 2012; Zhang

et al., 2012). (ii) Some features are only important for one RF classi�er but not for the

others, such as CT, and λ = 1, 2, 3. These features describe the characteristics of DHSs

in di�erent aspects, and therefore, the predictive performance can be improved by

combining these complementary features via the proposed ensemble learning

framework.

Table 3.

Ranking the top 10 most important features for the three di�erent individual RF classifiers (see Eq. 13)

RF(1)

 

RF(2)

 

RF(3)

 

Rank  Feature  MDA
(%) 

Rank  Feature  MDA
(%) 

Rank  Feature  MDA
(%) 

1  CG  35.46  1  CG  11.12  1  CG  29.70 

2  GC  14.13  2  CA  9.27  2  GC  14.82 

3  CA  12.46  3  GC  7.29  3  CA  10.86 

4  TG  11.19  4  AA  3.04  4  TG  10.38 

a a a
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RF(1)

 

RF(2)

 

RF(3)

 

Rank  Feature  MDA
(%) 

Rank  Feature  MDA
(%) 

Rank  Feature  MDA
(%) 

5  AT  8.63  5  CC  2.82  5  AT  8.58 

6  TT  7.20  6  AG  2.58  6  λ = 2  6.14 

7  TA  6.98  7  AT  2.13  7  TT  6.09 

8  AA  6.87  8  GA  1.87  8  TA  5.99 

9  CC  6.56  9  AC  1.86  9  λ = 3  5.67 

10  CT  6.05  10  TA  1.76  10  λ = 1  5.44 

The abbreviation of mean decrease accuracy.

3.5 Web server and user guide

For the convenience of the vast majority of experimental scientists, a web server for

the iDHS-EL predictor has been established. To our best knowledge, it is the �rst

web-server ever established for predicting the DHSs in human genome. Moreover, to

maximize users’ convenience, a step-by-step guide on how to use it to get the

desired results is given below.

Step 1.Open the web server at http://bioinformatics.hitsz.edu.cn/iDHS-EL, and you

will see its top page as shown in Figure 2. Click on the Read Me button to see a brief

introduction about the predictor and the caveat when using it.

a

Fig. 2.

http://bioinformatics.hitsz.edu.cn/iDHS-EL
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Step 2. You can either type or copy/paste the query DNA sequence into the input box

at the center of Figure 2, or directly upload your input data by the ‘Browse’ button.

The input sequence should be in the FASTA format. For the examples of DNA

sequences in FASTA format can be seen by clicking on the Example button right

above the input box.

Step 3. Click on the ‘Submit’ button to see the predicted results. For example, if you

use the four query DNA sequences in the Example window as the input, you will see

the following shown on the screen of your computer: (i) the �rst query DNA sequence

(misc_ppid_8090) is of DHS; (ii) the second query sequence (misc_ppid_7576) is of

DHS; (iii) the third query sequence (misc_ppid_7953) is of non-DHS; (iv) the fourth

query sequence (misc_ppid_6460) is of non-DHS. All these predicted results are

fully consistent with the experimental observations.

Step 4. Click on the ‘Benchmark Data’ button to download the datasets used to train

and test the model.

Step 5. Click on the ‘Citation’ button to �nd the relevant papers that document the

detailed development and algorithm of iDHS-EL.

4 Conclusion

View large Download slide

A semi-screenshot to show the top page of the iDHS-EL web-server. Its web-site address is
http://bioinformatics.hitsz.edu.cn/iDHS-EL/
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https://oup.silverchair-cdn.com/DownloadFile/DownloadImage.aspx?image=https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bioinformatics/32/16/10.1093_bioinformatics_btw186/2/btw186f2p.gif?Expires=1499933889&Signature=Q-sIuEF6Pyl5-tp7TbDnklPtHYvmYOruHuhV5oBKSxl9PR8dqfWkYvHXMSAn~Cc0zw6tX9K05-sJF~OKbuQSHffQr9xE4R4F2p1qimD~EOHH4XNEhPHnOvESMSQF6ZGgy4bECB~BkULiYi3eQfqAqQSK5yMlrVOkG8gDlniQH06~NZcJKc07dcn1gczY7jyQK78yjgaHYO0cZ1Lns7E1~xZNGnNXtL~FJJHfDAXVsU2gCSNFLRFUXSHvUK8IBNGwgsIoDuOs0c5aWMJnO-ccrZBHUaoNx9dLGKNPWneYwu7pBZM07TYinBSBcSbPsSM6I2xn5PeqFZUGwZa6XaIC3Q__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q&sec=84769003&ar=2240358&xsltPath=~/UI/app/XSLT&imagename=
http://bioinformatics.hitsz.edu.cn/iDHS-EL/


7/12/2017 iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning fr…

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw186 19/174

Skip to Main Content

4 Conclusion

A novel predictor called iDHS-EL was proposed for identifying the location of DHS in

human genome by fusing the kmer approach, reverse complement kmer approach,

dinucleotide-based auto cross covariance approach, and pseudo dinucleotide

composition approach into an ensemble classi�er.

It was demonstrated by cross-validations on a same benchmark dataset that the new

predictor outperformed the state-of-the-art methods (Feng et al., 2014; Noble et al.,

2005) in this area. Furthermore, a user-friendly a web server for iDHS-EL was

provided at http://bioinformatics.hitsz.edu.cn/iDHS-EL/, by which users can easily

obtain their desired results without the need to go through the complicated

mathematics involved, which were presented here just for its integrity. Also, it is the

�rst web-serve predictor ever established for identifying the location of DHS in

human genome.
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