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Abstract

A large genotyping project within the Breast Cancer Association Consortium (BCAC) recently 

identified 41 associations between single nucleotide polymorphisms (SNPs) and overall breast 

cancer (BC) risk. We investigated whether the effects of these 41 SNPs, as well as six SNPs 

associated with estrogen receptor (ER) negative BC risk are modified by 13 environmental risk 

factors for BC.

Data from 22 studies participating in BCAC were pooled, comprising up to 26,633 cases and 

30,119 controls. Interactions between SNPs and environmental factors were evaluated using an 

empirical Bayes-type shrinkage estimator.

Six SNPs showed interactions with associated p-values (pint) <1.1×10−3. None of the observed 

interactions was significant after accounting for multiple testing. The Bayesian False Discovery 

Probability was used to rank the findings, which indicated three interactions as being noteworthy 

at 1% prior probability of interaction. SNP rs6828523 was associated with increased ER-negative 

BC risk in women ≥170cm (OR=1.22, p=0.017), but inversely associated with ER-negative BC 

risk in women <160cm (OR=0.83, p=0.039, pint=1.9×10−4). The inverse association between 

rs4808801 and overall BC risk was stronger for women who had had four or more pregnancies 

(OR=0.85, p=2.0×10−4), and absent in women who had had just one (OR=0.96, p=0.19, pint = 

6.1×10−4). SNP rs11242675 was inversely associated with overall BC risk in never/former 

smokers (OR=0.93, p=2.8×10−5), but no association was observed in current smokers (OR=1.07, 

p=0.14, pint = 3.4×10−4).

In conclusion, recently identified breast cancer susceptibility loci are not strongly modified by 

established risk factors and the observed potential interactions require confirmation in independent 

studies.
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Introduction

Genetic and environmental factors are known to contribute to the risk of breast cancer. The 

biological interplay between them may lead to varying associations of the genetic factors 

with breast cancer risk depending on the exposure to an environmental factor. This can be 

assessed as departure from multiplicativity of the risk ratios of the genetic variant and the 

environmental factor (gene-environment (G×E) interaction). Several studies have 

investigated whether the relative risks associated with common genetic breast cancer 

susceptibility loci are modified by environmental risk factors1–5. In the most recent 

investigation of 23 single nucleotide polymorphisms (SNPs) using data from the Breast 

Cancer Association Consortium (BCAC), we were able to replicate a previously reported 

interaction between rs3817198 in LSP1 and number of full-term pregnancies in parous 

women, and identify an interaction between rs17468277 in CASP8 and varying levels of 

mean lifetime alcohol consumption (>20 g/day vs. ≥20 g/day)1. The identification of G×E 

interactions may improve our understanding of breast cancer aetiology by suggesting 

potential biological pathways involved.

A recently conducted large genotyping project (Collaborative Oncological Gene-

environment Study (COGS)) identified 41 novel genetic susceptibility loci for breast cancer, 

explaining an additional 5% of the familial breast cancer risk6. The project also led to the 

identification of four loci associated with risk of estrogen receptor (ER) negative breast 

cancer7 additional to the three previously established ER-negative breast cancer 

susceptibility loci8–10. G×E interactions with these newly identified variants have not been 

investigated so far.

Here, we evaluated G×E interactions on overall breast cancer risk between 47 single 

nucleotide polymorphisms (SNPs) and the following environmental factors: age at 

menarche, parity, age at first birth, breastfeeding, use of menopausal hormone therapy 

(MHT), body-mass index (BMI), adult height, smoking and alcohol consumption. The 47 

SNPs represent 41 newly identified genetic susceptibility loci for overall breast cancer as 

well as 6 loci associated with risk for ER negative breast cancer (genotype data for the 

seventh ER-negative breast cancer SNP (rs2284378) was not available). We also assessed 

G×E interactions regarding risk for ER-positive and ER-negative breast cancer separately, as 

different pathways may be involved in the development of these subtypes. This investigation 

uses the largest dataset available at present, including genotype data on the newly identified 

breast cancer susceptibility loci and comprehensive data on environmental risk factors.

Materials and Methods

Study samples

We pooled data from 22 studies participating in BCAC (20 case-control studies, 2 cohort 

studies), which mainly recruited participants of European descent (Supplementary Table 1). 

Selected studies comprised at least 200 cases and 200 controls with genotype data and 

information on at least one of the environmental risk factors of interest.
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We excluded participants from this analysis if they were male, were prevalent cases at 

recruitment (in MCCS and pKARMA), were not of European descent, or had a missing 

value for reference age (age at diagnosis/interview), the specific environmental variable of 

interest, or the related adjustment variables. Therefore, the number of participants available 

for analysis varied depending on the investigated environmental factor. The dataset with 

subjects included in at least one of the analyses comprised 31,850 cases and 34,816 controls. 

The largest sample was available for the G×E interaction analysis between SNPs and ever 

being parous, which included 26,633 cases and 30,119 controls and the smallest sample was 

available for the analysis involving lifetime average intake of alcohol, which included 3,811 

cases and 4,053 controls.

All studies were approved by the relevant ethics committees and informed consent was 

obtained from all participants.

Data harmonization and variable definitions

Data from the different studies were harmonized in a multi-step process according to a 

common data dictionary. In both case-control and cohort studies, time-dependent variables 

were assessed at reference date, which was defined as the date of diagnosis for cases and the 

date of interview for controls: for controls and cases from the two included cohort studies, 

data from the baseline interview were considered, or if available, follow-up information1. 

The median time between last interview/questionnaire and diagnosis was 7.6 years in the 

MCCS cohort and 2.0 years in the UKBGS cohort.

Current use of any MHT was defined as use within 6 months prior to the reference date and 

current smoking as smoking within one year prior to the reference date. An age surrogate 

was used to define menopausal status. Women aged ≤ 54 years at reference date were 

considered to be premenopausal and women aged > 54 years postmenopausal1. BMI was 

calculated based on usual adult weight or weight one year prior to the reference date (studies 

ABCFS, BREOGAN, CECILE, GENICA, kConFab/AOCS, KBCP, MARIE, MCBCS, 

OFBCR, PBCS, SASBAC) or weight in early adulthood (age around 20 years, studies 

ESTHER, pKARMA, SEARCH). For the two cohort studies (MCCS, UKBGS), we used the 

weight reported at baseline interview.

Genetic information

The genotyping data used in this study for all studies except BREOGAN were generated as 

part of the COGS project (www.nature.com/icogs). Participants from studies in BCAC were 

genotyped using an Illumina iSelect array (iCOGS)6. Approximately 61,000 of the 211,155 

SNPs included on the iCOGS array were selected to follow-up on a meta-analysis of nine 

breast cancer genome-wide association studies (GWAS). A subsequent association study in 

45,290 cases and 41,880 controls led to the identification of 41 SNPs associated with overall 

breast cancer risk6. Similarly, three GWAS studies were meta-analysed to identify loci 

associated with ER-negative breast cancer risk, and 13,276 SNPs were selected to be 

genotyped on the iCOGS array for the replication stage, comprising 6,514 ER-negative 

breast cancer cases and 41,455 controls. Four new loci showing a specific association with 

ER-negative breast cancer were detected7.
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In the current study, we use the original quality-controlled genotype data that was used for 

identification of the 41 SNPs and the four SNPs associated with ER-negative breast cancer 

risk, for all studies except for subjects in BREOGAN. Two of the three previously identified 

SNPs specifically associated with ER-negative breast cancer risk were also genotyped with 

the iCOGS array (rs10069690 in TERT on chromosome 5, rs8170 in BABAM1 on 

chromosome 19); genotype data for rs2284378 on chromosome 20q11 were not available.

Study participants were excluded from analyses if the overall genotyping call rate was below 

95% over the whole iCOGS array or if heterozygosity deviated significantly from that 

expected in the general population (either lower or higher, p <10−6).

Genotyping of the 47 SNPs for BREOGAN was performed at the CeGen-ISCIII (Spanish 

National Genotyping Center), using Sequenom MassARRAY Genotyping system 

(technology iPLEX GOLD) and following the manufacturer’s instructions. DNA was 

dispensed in 384 well plates by a Tecan Freedom Evo robot, each plate included case and 

control samples, a trio of Coriell samples: Na10830, Na10831 and Na12147, and negative 

controls (minimum 6 per plate). We included >5% concordant duplicates. The laboratory 

was equipped with Life Technologies GeneAmp 9700 dual cyclers, a RS1000 

Nanodispenser and a MA4 mass spectrometer. Data analysis was done using the software 

Typer analyzer v4.0.20. The SNPs were analyzed in 4 assays (Assay Design v4 software). 

The genotyping data were quality checked using the same criteria as for iCOGS6.

To evaluate potential functional implications of selected SNPs and SNPs in high linkage 

disequilibrium (LD) with selected SNPs we used HaploReg v211 and the UCSC genome 

browser12.

Statistical analysis

We employed an efficient empirical Bayes procedure to calculate the interaction log odds 

ratio that corresponds to a weighted average of the case-only and case-control estimators. In 

this way, the method makes use of the greater precision of the case-only estimator by 

simultaneously reducing the chance of generating biased estimates due to violations of the 

assumption of gene-environment independence in controls13. The method is implemented in 

the R package “CGEN”, version 2.2, which was used within R 2.15.2.

In total, 13 variables representing the environmental risk factors of interest were used in 

G×E analyses (Supplementary Figure 1). The variables were: age at menarche (per 2 years), 

ever parous (no vs. yes), number of full-term pregnancies (among parous, 1, 2, 3, ≥4 

pregnancies), ever breastfed (yes vs. no), age at first full-term pregnancy (per 5 years), adult 

BMI in premenopausal women (per 5 kg/m2), adult BMI in postmenopausal women (per 5 

kg/m2), adult height (per 5 cm), current use of combined estrogen-progesterone therapy (no 

vs. yes), current use of estrogen-only therapy (no vs. yes), lifetime average intake of alcohol 

(per 10 g/day), current smoking (no vs. yes), smoking amount (per 10 pack-years). The 

variables age at menarche, number of full-term pregnancies, age at first full-term pregnancy, 

adult BMI, adult height, lifetime intake of alcohol, and smoking amount were entered into 

models as linear continuous variables. For SNPs, we included the number of minor alleles 

Rudolph et al. Page 4

Int J Cancer. Author manuscript; available in PMC 2016 March 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(0-1-2) as a continuous variable. Subjects with missing data for a particular SNP or an 

environmental factor were excluded from the respective analysis.

The models were adjusted for study, reference age and seven principal components to 

account for population substructure. Additionally, to account for potential differential main 

effects of environmental variables by study design, we included in all models an interaction 

term between the environmental variable of interest and an indicator variable for study 

design (non-population-based vs. population-based).

MHT was classified into estrogen-only therapy and estrogen-progesterone therapy. Models 

used to assess associations with current use of the type of MHT of interest were further 

adjusted for former use of any MHT and use of MHT preparations other than the one of 

interest, and the analysis was restricted to postmenopausal women. Also, when assessing 

G×E interactions with adult BMI in postmenopausal women, the study sample was restricted 

to never or former users of any MHT.

All analyses were conducted with overall breast cancer risk as the outcome, as well as with 

ER-negative and ER-positive breast cancer risk. Heterogeneity between risk associations for 

ER-negative and ER-positive breast cancer was evaluated using case-case analysis with ER-

status as the dependent variable and the SNP, the environmental variable, the multiplicative 

interaction term, ancestry informative principal components and study as independent 

variables. The association between SNP and breast cancer risk in strata defined by 

categories of the environmental risk factor was evaluated using logistic regression. Stratified 

analyses were conducted using SAS 9.2.

To evaluate between-study heterogeneity in G×E interaction OR estimates, we calculated 

these by study and performed Cochrane’s Q-test and calculated the I2 index, using the R 

package “meta” (version 2.2).

We selected G×E interactions showing p-values for interaction <1.1×10−3 for overall breast 

cancer (all subtypes combined) or a subtype of breast cancer, but in the latter case, only if 

significant subtype heterogeneity (p-values for heterogeneity between ER-positive and ER-

negative disease <0.05) was also observed. The p-value threshold for selection was derived 

by dividing the conventional p-value threshold of 0.05 by the number of SNPs investigated. 

To account for chance findings due to multiple hypothesis testing, we applied the Bayesian 

False Discovery Probability (BFDP)14 to assess noteworthiness of selected G×E interactions 

in terms of generating new hypotheses. We assumed a four-fold cost of a false non-

discovery compared to the cost of a false discovery, considering interactions with a BFDP of 

less than 80% as being noteworthy, as suggested by Wakefield et al. 14. The OR 

corresponding to the 97.5% point of the prior was 1.50 for positive G×E interactions and 

0.66 for negative G×E interactions, i.e. we assumed that the prior probability of observing 

an OR for interaction larger than 1.5 or smaller than 0.66 was 5%. We calculated the BFDP 

for each selected interaction assuming six different prior probabilities for true interaction 

(20%, 10%, 5%, 1%, 0.1% and 0.01%).

Rudolph et al. Page 5

Int J Cancer. Author manuscript; available in PMC 2016 March 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Results

A brief description of the BCAC studies included in this analysis of G×E interactions is 

provided in Supplementary Table 1. The number of included cases and controls as well as 

the mean reference age for each study is shown in Table 1. Overall, the mean age was 56.7 

years for cases and 55.6 years for controls. Further descriptions of the environmental 

variables are displayed in Supplementary Table 2.

The associations between SNPs and breast cancer risk were very similar in the study sample 

used for G×E interaction analysis (N = 66,666) to those reported by Michailidou et al. 

(sample size N = 87,170)6 (Supplementary Table 3). The largest difference was observed for 

rs11814448, which was previously reported to be associated with overall breast cancer with 

an OR of 1.26 (95% CI 1.18 – 1.35) and showed a slightly attenuated effect size in the G×E 

dataset (odds ratio (OR) = 1.21, 95% confidence interval (CI) 1.13 – 1.31). Supplementary 

Table 3 shows further information for each SNP such as the minor allele frequency and SNP 

location.

Forest plots for meta-analyses of the associations between the 13 environmental risk factors 

and breast cancer risk by study can be found in Supplementary Figure 1. The risk factor 

associations based on the population-based studies were consistent with previous reports. 

Age at menarche, ever been parous, and number of full-term pregnancies among parous 

women were significantly associated with a decreased breast cancer risk. Significant 

associations with increased breast cancer risk were observed for breastfeeding (among 

parous women, no vs. yes), age at first full-term pregnancy, BMI in postmenopausal women 

not currently using MHT, body height, current use of postmenopausal combined estrogen-

progesterone therapy, and average lifetime intake of alcohol. No significant associations 

were found between breast cancer risk and BMI in premenopausal women, current use of 

estrogen-only therapy, current smoking and smoking amount (pack-years).

We identified six G×E interactions with p-values for interaction (pint) <1.1×10−3 (Figure 1). 

Estimates for each investigated G×E interaction and ORs for association between SNP and 

breast cancer stratified by categories of the environmental factors are presented in 

Supplementary Table 4. Estimates from empirical Bayes and case-control analysis (data not 

shown) were very similar, but p-values for interaction from empirical Bayes analysis were 

usually more extreme, possibly reflecting a small gain in power. Three of the six interactions 

were considered noteworthy according to a BFDP <80% at a 1% prior probability of 

interaction (Table 2). However, none of the observed interactions was noteworthy by this 

criterion assuming more conservative prior probabilities for interaction <1%.

The interaction with the lowest BFDP (BFDP = 36.0% at 1% prior probability of 

interaction) was observed regarding ER-negative breast cancer risk, between the SNP 

rs6828523 located in an intron of ADAM29 and adult height (ER-negative OR for interaction 

(ORint) = 1.14, 95% CI 1.06 – 1.22, pint = 1.9×10−4). The interaction was not observed for 

ER-positive breast cancer risk (ORint = 1.00, 95% CI 0.96 – 1.03, pint = 9.0×10−1, p-value 

for heterogeneity by ER status (phet) = 0.003). SNP rs6828523 was associated with 

increased risk for ER-negative breast cancer in women of 170cm height or taller (ER-
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negative OR = 1.22, 95% CI 1.04 – 1.44, p = 0.017), but showed an inverse association in 

women shorter than 160cm (ER-negative OR = 0.83, 95% CI 0.70 – 0.99, p = 0.039) (Figure 

1A). The five additional G×E interactions are reported below, ordered by their 

corresponding BFDP, as reported in Table 2.

Regarding overall breast cancer risk, an interaction between the number of full-term 

pregnancies and rs4808801 was observed (ORint = 0.96, 95% CI 0.94 – 0.98, pint = 

6.1×10−4, BFDP = 51.6% at 1% prior probability of interaction). The interaction did not 

differ by ER status (phet = 0.40) (Supplementary Table 5). The SNP is located in an intron of 

ELL on chromosome 19. The association between breast cancer risk and rs4808801 was 

stronger in women with four or more full-term pregnancies (OR = 0.85, 95% CI 0.77 – 0.93, 

p = 2.0×10−4), and weaker in women with one full-term pregnancy (OR = 0.96, 95% CI 0.90 

– 1.02, p = 0.19) (Figure 1B).

Another interaction on overall breast cancer risk was found between current smoking and 

rs11242675, located on chromosome 6 near FOXQ1 (ORint = 1.13, 95% CI 1.06 – 1.21, pint 

= 3.4×10−4, BFDP = 60.5% at 1% prior probability of interaction). Again, the interaction 

was not substantially different for ER-negative and ER-positive breast cancer (phet = 0.82) 

(Supplementary Table 5). As shown in Figure 1C, rs11242675 was associated with a 

decreased breast cancer risk in women who did not smoke at reference time (OR = 0.93, 

95% CI 0.89 – 0.96, p = 2.8×10−5), but this association was not observed in women who 

smoked at reference time (OR = 1.07, 95% CI 0.98 – 1.16, p = 0.14).

The three remaining interactions of the six G×E interactions in total with pint <1.1×10−3 

could not be considered noteworthy according to their BFDP estimated using a prior 

probability of interaction of 1% or lower (Table 2). One of the interactions was observed for 

ER-positive breast cancer risk, between rs16857609 and adult height (ER-positive ORint = 

0.95, 95% CI 0.93 – 0.98, pint = 1.7×10−4, phet = 0.018; Supplementary Table 5). The 

variant rs16857609 is located in an intron of DIRC3 on chromosome 2. In the stratified 

analysis, rs16857609 was associated with an increased risk of estrogen receptor positive 

breast cancer in women shorter than 160cm (ER-positive OR = 1.15, 95% CI 1.07 – 1.23, p 

= 2.0×10−4), whereas it was not associated with breast cancer risk in women of 170cm 

height or taller (ER-positive OR = 0.97, 95% CI 0.90 – 1.04, p = 0.40) (Figure 1D).

Two further G×E interactions were observed specifically for ER-negative breast cancer risk, 

one between rs12422552 located on chromosome 12 and adult height (ER-negative ORint = 

1.09, 95% CI 1.04 – 1.15, pint = 7.4×10−4, phet = 0.006, Supplementary Table 5). The minor 

allele of rs12422552 was associated with risk for ER-negative breast cancer in women of 

170cm height or taller (ER-negative OR = 1.18, 95% CI 1.04 – 1.34, p = 0.011), but not in 

women shorter than 160cm (ER-negative OR = 0.92, 95% CI 0.81 – 1.04, p = 0.16) (Figure 

4E). The other interaction specific for ER-negative breast cancer risk was between rs941764 

located in an intron of CCDC88C on chromosome 14 and alcohol consumption (ER-

negative ORint = 0.53, 95% CI 0.36 – 0.76, pint = 6.8×10−4, phet = 0.042, Figure 4F, 

Supplementary Table 5). As shown in Figure 4F, rs941764 was inversely associated with 

risk of ER-negative breast cancer risk in women having an lifetime average consumption of 

at least 20 g alcohol per day (ER-negative OR = 0.61, 95% CI 0.38 – 0.97, p = 0.037), while 
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this association was not present in women with a lower lifetime average consumption of 

alcohol (ER-negative OR = 0.96, 95% CI 0.84 – 1.10, p = 0.59).

There was no significant heterogeneity between study-wise estimates for G×E interactions: 

p-values from Q-test ranged from 0.36 to 0.78 (Supplementary Figure 2).

Discussion

The present study identified six G×E interactions with pint <1.1×10−3, two regarding risk for 

overall breast cancer, one regarding risk for ER-positive breast cancer and three regarding 

risk for ER-negative breast cancer. After calculating the BFDP, none of the six interactions 

could be considered as being noteworthy at prior probabilities for interaction smaller than 

one percent although three G×E interactions were considered noteworthy at 1% prior 

probability of interaction. Our results do not suggest that the relative risks associated with 47 

recently identified breast cancer susceptibility loci are strongly modified by environmental 

risk factors for breast cancer.

For some the effect modifications assessed, our findings are based on the largest available 

dataset at present. The number of studies with available data was relatively small for other 

environmental risk factors such as alcohol consumption and use of MHT. Power was also 

likely diminished due to the fact that we studied mostly tag-SNPs, rather the true genetic 

variants affecting breast cancer risk. The power was even further reduced when looking at 

subtype specific associations, especially for ER-negative breast cancer risk. Although the 

environmental data of the contributing studies were harmonized in a standardized fashion, 

we still observed heterogeneity in marginal effect associations with breast cancer risk 

(Supplementary Figure 1). Associations were less heterogeneous between population-based 

studies, and we included an interaction term between study design and the environmental 

variable in the models to account for potentially biased estimates from non-population-based 

studies. The assessment of associations between environmental factors and breast cancer 

risk was restricted to population-based studies and the estimates were comparable to those 

reported in the literature15–22. The association was not significant for BMI in premenopausal 

women, which may in part be attributed to the small sample available when using only 

population-based studies, however the direction of association was as expected. Another 

limitation of our study was that the sample consisted primarily of case-control studies and 

comprised only two cohort studies. While case-control studies have the advantage of being 

able to assess exposure close to the reference date, for example, for current MHT use, the 

retrospective assessment of exposure is prone to recall bias. However, we did not observe 

any heterogeneity between study-wise estimates for G×E interactions. Also, G×E interaction 

estimates derived from the whole study sample and from a sensitivity analysis restricted to 

population-based studies were similar (Supplementary Table 6). The robustness of our 

findings is also supported by the fact that, given reasonable assumptions, selection bias is 

unlikely to influence the assessment of multiplicative G×E interactions23. Also, both non-

differential and differential misclassifications of environmental risk factors would lead to a 

reduction in power rather than increasing the probability of a spurious finding of an 

interaction24. The magnitude of the interactions for which strongest evidence was observed 

was comparable to those previously reported between breast cancer risk SNPs and 
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environmental factors1. When taking into account the number of tests performed, the 

identified G×E interactions were not statistically significant and further evidence is needed 

for confirmation. However, not all of the performed tests can be considered independent as 

we looked at different variables that are highly correlated (e.g. parity and number of full 

term pregnancies) and also tests for interaction concerning all cases and subgroups of cases 

defined by ER status are related. We therefore calculated the BFDP to be able to rate the 

noteworthiness of the observed G×E interactions.

It should be noted, that the investigated susceptibility loci have been identified in a sample 

of European descent, and that this investigation of gene-environment interaction was also 

restricted to subjects with European ancestry. The potential gene-environment interactions 

detected here do not necessarily have to be present in study populations of different ancestry 

due to the varying genetic structure and possible different prevalence of risk factors.

The interaction with the lowest BFDP was found between rs6828523 and adult height on 

ER-negative breast cancer risk. The SNP rs6828523 itself was associated with a decreased 

risk of ER-positive breast cancer, but not for ER-negative breast cancer, showing significant 

heterogeneity by ER status in the analysis identifying the variant (phet = 1.2×10−7)6, and also 

in sample analysed here (phet = 9.5×10−6). SNP rs6828523 showed a positive association 

with ER-negative breast cancer risk in women taller than 164 cm (the median height in the 

study sample) (ER-negative OR = 1.13, 95% CI 1.01 – 1.26, p = 0.036). Current evidence 

suggests that adult body height is a risk factor for both ER-positive and ER-negative breast 

cancer, although the estimates for ER-negative breast cancer are not entirely consistent 

across studies25–29. The variant rs6828523 is located in an intron of ADAM29. The 

potentially functional implications of rs6828523 or SNPs highly correlated with rs6828523 

(r2>0.6) are unclear as they are not located within any strong regulatory elements 

(Supplementary Figure 3). Also, a more comprehensive investigation of the functional 

effects of the 41 SNPs associated with overall breast cancer risk did not identify a SNP in 

LD with rs6828523 coinciding with a regulatory genomic feature30. ADAM29 encodes a 

disintegrin-metalloproteinase. Metalloproteinases are involved in the modification of the 

extracellular matrix and growth factor bioavailability, and changes in expression of 

metalloproteinases have been linked to breast cancer progression31. It is unclear however, 

how factors involved in growth and adult height might interplay with variants in ADAM29 to 

influence risk of ER-negative breast cancer.

The association of rs4808801 located on chromosome 19 in an intron of ELL with overall 

breast cancer risk appeared to vary according to the number of full-term pregnancies in 

parous women. Risk of breast cancer associated with the SNP decreased with an increasing 

number of pregnancies. Several SNPs in LD with rs4808801 (r2 > 0.6) are located in 

regulatory regions (enhancer elements, DNAse hypersensitive sites, transcription factor 

binding sites) in the proximity of ELL and two closely-located genes, SSBP4 and ISYNA1 

(Supplementary Figure 3). Three SNPs in LD with rs4808801 (r2 ≥ 0.9) are located in exons 

of SSBP4 (rs10405636) and ISYNA1 (rs2303697, rs4595905), and all result in synonymous 

codon changes. ELL encodes the eleven-nineteen lysine-rich leukaemia protein, which was 

first identified as part of a fusion gene MLL-ELL in acute myeloid leukaemia cells, caused 

by a t(11;19)(q23;p13.1) translocation32. ELL is part of the super elongation complex, an 
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important regulator of transcriptional elongation33. Furthermore, ELL has been found to be 

essential for the transcription of rapidly induced genes, and therefore plays a key role in 

quick responses to environmental changes34. Rhie et al. identified another SNP (rs2303696) 

in LD with rs4808801 (r2 = 0.79) located in the promoter region of ISYNA1, and likely to 

affect ISYNA1 expression30. ISYNA1 encodes an inositol-3-phosphate synthase enzyme that 

catalyses the synthesis of inositol 1-phosphate from glucose 6-phosphate. ISYNA1 

expression has been found to be reduced in breast cancer30. Inositol containing compounds 

are involved in many biological processes and act as essential second messenger molecules 

in signalling pathways35, as components of cellular membranes35 and regulators of 

chromatin remodelling36, 37. Less is known about the role of SSBP4. SSBP4 is a putative 

tumour suppressor, as chromosomal regions containing members of the SSBP gene family 

are often found to be deleted in solid tumours38. How biological changes associated with 

multiple pregnancies in women potentially interplay with rs4808801 to influence its 

association with breast cancer risk is unknown.

We also observed that current smoking may modify the risk associated with rs11242675, 

located in close proximity to FOXQ1 on chromosome 6. Two SNPs in LD with rs11242675 

are located in enhancer regions30. FOXQ1 is a transcription factor, which has been found to 

be involved in the epithelial-mesenchymal transition of tumour cells, a process initiating 

metastasis39. Overexpression of FOXQ1 was observed in colorectal cancer40 and metastatic 

breast cancer cell lines41 and a subsequent study suggested that FOXQ1 overexpression is 

caused by aberrant Wnt signalling42. A potential biological implication of the interaction 

between current smoking and rs11242675 is suggested by the observation that cigarette 

smoking deregulates nitric oxide synthesis43, which in turn may decrease the expression of 

the Wnt/β-catenin regulator Dickkopf-1 (DKK1) and release Wnt signalling44.

This is the first evaluation of multiplicative G×E interactions between these 47 newly 

identified breast cancer susceptibility loci and environmental risk factors. For most of the 

investigated pairs of SNPs and environmental factors, there was no indication of 

multiplicative G×E interaction. However, despite the overall very large study sample, we 

cannot exclude the existence of real G×E interactions of smaller magnitude with some 

environmental risk factors, for which power in this study was still limited. The six potential 

interactions identified are largely hypothesis generating and have to be confirmed in 

independent studies of sufficient size. Overall, our study does not suggest that the 

associations between recently identified breast cancer susceptibility loci and breast cancer 

risk are strongly modified by environmental risk factors.
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Novelty and Impact Statement

Relative risks associated with 47 recently identified susceptibility loci for overall or 

estrogen receptor negative breast cancer may vary depending on exposure levels of 

environmental (non-genetic) risk factors. In this study, gene-environment interactions 

between these 47 single nucleotide polymorphisms and 13 established environmental risk 

factors were investigated. Relative risks of breast cancer associated with the 

susceptibility loci were not strongly modified by environmental risk factors. This finding 

may have important implications for risk prediction.
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Figure 1. 
Odds ratios and 95% confidence intervals for association between SNP and overall breast 

cancer (B, C), estrogen receptor positive breast cancer (D), and estrogen receptor negative 

breast cancer (A, E, F) stratified by categories of environmental factors.
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