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Colorectal cancer is generally categorized into the following four stages according to its development or serious degree: Dukes A, B,
C, and D. Since different stage of colorectal cancer actually corresponds to different activated region of the network, the transition of
different network states may reflect its pathological changes. In view of this, we compared the gene expressions among the colorectal
cancer patients in the aforementioned four stages and obtained the early and late stage biomarkers, respectively. Subsequently, the
two kinds of biomarkers were both mapped onto the protein interaction network. If an early biomarker and a late biomarker were
close in the network and also if their expression levels were correlated in the Dukes B and C patients, then a signal propagation path
from the early stage biomarker to the late one was identified. Many transition genes in the signal propagation paths were involved
with the signal transduction, cell communication, and cellular process regulation. Some transition hubs were known as colorectal
cancer genes. The findings reported here may provide useful insights for revealing the mechanism of colorectal cancer progression

at the cellular systems biology level.

1. Background

Cancer is a complex system disease [1]. The complexity
reflects in many ways. First, it is a network disease that
involves the changes of many genes and these genes are
connected in a certain way. Second, the disease network is
evolving all the time during the progression. Some efforts
have been made to understand such dynamic network [2-6].

As the third most common cancer worldwide [7], colorec-
tal cancer develops via a progressive accumulation of genetic
mutations and pathway dysfunctions [6]. It has the following
four stages from early to late [8]: Dukes A, B, C, and D. In the
stage of Dukes A, the cancer is only limited to the innermost
layer. In Dukes B stage, the cancer has grown through the
muscle layer. In Dukes C stage, the cancer has spread to the
lymph nodes nearby. In Dukes D stage, the cancer is widely
spread. The stage of Dukes D is the most advanced stage of

colorectal cancer. Understanding the underlying molecular
mechanisms of the pathological changes in colorectal cancer
progression will facilitate the development of therapeutic
treatments.

In the study of prion disease, it was found that during
different stages of the disease, different regions of the network
were activated and they formed a clear disease aggravation
pattern on the network [2]. However, it is still not clear how
one activated region is connected with another and how they
can transit into one another.

To investigate the transition processes of different net-
work states, we analyzed the gene expression profiles of
290 colorectal cancer patients, who were at different stages
of Dukes A, B, C, and D. Using the Maximum Relevance
and Minimum Redundancy (mRMR) [9] and Incremental
Feature Selection (IFS) methods [10, 11] to compare the gene
expressions among the patients of Dukes A, B, C, and D
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stages, we obtained 158 early stage biomarkers and 284 late
stage biomarkers, respectively. Subsequently, the early stage
biomarkers and the late stage biomarkers were mapped onto
the protein interaction network. If the early stage biomarker
and the late stage biomarker were close to each other in the
network, and also their expression levels were correlated with
the patients of the Dukes B and C stages, then we assume
that a signal propagation path may exist from the early stage
biomarker to the late stage biomarker. Thus, by screening all
the possible signal propagation paths from the early stage
biomarkers to the late stage biomarkers, we have identified
632 signal propagation paths that contained 473 transition
genes.

According to the Gene Ontology (GO) [12] enrichment
analysis, many of the transition genes that transmitted the
disease signal from the early stage biomarkers to the late
stage biomarkers were involved into the signal transduction,
cell communication, and cellular process regulation. Some
transition hub genes were known colorectal cancer genes.
They helped the transduction of the disease signal and the
aggravation of colorectal cancer.

One signal propagation path from early stage biomarker
MAVS to late stage biomarker GFPT1 was shown as an exam-
ple. MAVS is an important immune protein and signaling
protein in mitochondria [13-15] and GFPT1 is a rate-limiting
enzyme of metabolism [16, 17]. It was suggested through
our signal propagation analysis that MAVS responded to
colorectal cancer in the early stage and then transmitted
the disease signal to GFPT1 whose dysfunction further
accelerated the colorectal cancer patients into late stage. This
kind of in-depth analysis on the signal propagation path may
provide useful insights into, or enrich, the understanding of
the mechanism of colorectal cancer at the cellular or system
biology level.

2. Methods

2.1. Benchmark Dataset. We downloaded the expression pro-
files 0f 19,621 genes in 290 colorectal cancer patients [18] from
Gene Expression Omnibus (GEO) under accession number
GSE14333. Of the 290 colorectal cancer patients, 44 were
Dukes stage A, 94 Dukes stage B, 91 Dukes stage C, and 61
Dukes stage D. From Dukes A stage to Dukes D, the colorectal
cancer gets more and more severe.

The protein interaction network we used was STRING
v9.0 (http://string-db.org/) [19]. Each protein interaction in
STRING has a confidence score, varying from 0.150 to 1. The
confidence score is calculated by integrating the functional
associations from genomic context, experiments, conserved
coexpression, and previous knowledge with Bayesian method
[19]. Suppose the interaction confidence score is denoted by
[ it follows according to the original definition

score?

low confidence, if I, ore > 0.150
Lo = mediam confidence, if I > 0.400 M
7k ™ 1 high confidence, if I,.o;e > 0.700
highest confidence, if ... > 0.900,

where [, represents the rank of protein interaction.
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FIGURE 1: The diagram of signal propagation analysis during cancer
progression. The blue arrow represents cancer progression. The
colorectal cancer has four stages: Dukes A, B, C, and D. From A to
D, the cancer gets worse and worse. Yellow nodes and grey nodes
represent the biomarkers in the early and late stage, respectively. The
goal of signal propagation analysis is to understand the transition
from early stage biomarkers to late stage biomarkers by analyzing
the signal propagation in the protein interaction network.

2.2. The Diagram of Signal Propagation Analysis during Cancer
Progression. In studying or analyzing complex biological
systems, it is quite helpful to introduce graphs or diagrams
since they can provide an overall view or intuitive insights
for the systems investigated, as demonstrated by a series of
studies on various important biological topics (see, e.g., [20—
29]). In this study, we first constructed a graph G with the
PPI data from STRING. In the graph, an edge was assigned
for each pair of proteins if they were in interaction with each
other. There were 1375295 interaction edges among 15240
proteins. The “intimate degree” between two interacting
proteins was defined by

I =1000 X (1 = lycore) > (2)

intimate

where [, is the confidence score between two proteins
concerned [19]. Thus, the higher the interaction confidence
score between two proteins is, the closer their “interactive
distance,” and hence more intimate between them.

Shown in Figure 1 is an illustration for analyzing the sig-
nal propagation during the cancer progression. The colorectal
cancer has four stages: Dukes A, B, C, and D. From Dukes
A to Dukes D, the cancer gets worse and worse. The blue
arrow represents the cancer progression. Below, we are to
identify the biomarkers in the early stage (yellow nodes) and
biomarkers in the late stage (grey nodes). Subsequently, we
try to understand the transition from early stage biomarkers
to late stage biomarkers by analyzing the signal propagation
in the protein interaction network. This kind of analysis may
provide useful insights for us to in-depth understand how the
signal is propagated through the network.

2.3. Identification of Biomarkers in the Early and Late Stage.
The following methods were used to identify the genes
between different Dukes stages. First, the Maximum Rel-
evance and Minimum Redundancy (mRMR) [9] method
was applied to select the genes that has both maximum
relevance with the cancer stages and minimum redundancy
to each other. The mRMR program was downloaded from
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http://penglab.janelia.org/proj/mRMR/. Second, the mRMR
ranked genes were optimized with the Incremental Feature
Selection (IFS) method [8, 30-35]. During the IFS operation,
the accuracies of all possible top gene sets were calculated
and the gene set that had the highest prediction accuracy was
chosen as the optimal gene set, that is, the biomarkers. The
accuracy was examined by the jackknife test, also known as
Leave-One-Out Cross Validation (LOOCV) [36-39] and the
prediction model was Nearest Neighbor Algorithm (NNA)
[40]. The prediction accuracy was defined as the number of
correctly predicted samples divided by the number of total
samples.

The early stage biomarkers were selected from the Dukes
A patients and Dukes B patients with mRMR and IFS
methods. The late stage biomarkers were selected from the
Dukes C patients and Dukes D patients.

2.4. The Transition from the Early Stage Biomarkers to the Late
Stage Biomarkers. The early stage biomarkers and late stage
biomarkers were mapped onto weighted protein interaction
network graph G. We identified the shortest paths between
them using Dijkstra’s algorithm [41-43]. The path length was
the sum of edge weights through which the path passed. If the
path length was smaller than 1000 x (1 — 0.700) = 300, it had
high confidence to happen.

Meanwhile, we also tested the correlation between early
stage biomarkers and late stage biomarkers in Dukes B
patients and Dukes C patients. The Pearson correlation test
P values were adjusted with false discovery rate (FDR) [44].
The cutoft of Pearson correlation test FDR was set to 0.001.

Included were those transitions that had the length
shorter than 300 and the correlation test FDR smaller than
0.001. The shortest paths from the early stage biomarkers to
the late stage biomarkers in the protein interaction network
were deemed as the signal propagation paths for the transi-
tion.

2.5. Statistical Significance of Signal Propagation Path Identifi-
cation. To evaluate the statistical significance of the identified
signal propagation paths, we estimated the FDR of the
signal propagation path based on the permutation [45]. We
permuted the gene symbols in protein interaction network
and gene expression profiles by 20,000 times. For each of
the permutations, we calculated the length of the shortest
path based on the weighted protein interaction network and
the Pearson correlation test P value adjusted with the FDR
method based on the gene expression profiles. The FDR of
the signal propagation path was defined as

Nl
ignal-path = 77 (3)
signal-pat N2

FDR

where N, was the number of permutations in which the
permuted shortest path length is shorter than the actual
shortest path length and the permuted Pearson correlation
test FDR is smaller than the actual Pearson correlation test
FDR, while N, the total number of permutations which was
20,000 in this study.

2.6. The Transition Hubs in the Signal Propagation Paths.
For each of the transition genes, we calculated the number
of shortest paths that crossed it. Those genes that were
crossed by more signal propagation paths were deemed more
important transition hubs.

3. Results

3.1. Early and Late Stage Biomarkers. By selecting discrim-
inative genes between the Dukes A patients and the Dukes
B patients with mRMR and IFS methods, we identified the
early stage biomarkers. Similarly, we obtained the late stage
biomarkers from the Dukes C patients and the Dukes D
patients. The IFS curves of early and late stage biomarker
selection were shown in Figures 2(a) and 2(b), respectively.
In Figure 2(a), the highest accuracy was 0.891 with 158 genes
of the early stage biomarkers. In Figure 2(b), the highest accu-
racy was 0.855 with 284 genes of the early stage biomarkers.
The 158 early stage biomarkers and 284 late stage biomarkers
can be found in Supplemental Tables S1 and S2, available
online at http://dx.doi.org/10.1155/2013/287019 respectively.

3.2. Comparison of Early and Late Stage Biomarkers. Now
let us compare the early stage biomarkers with the late stage
ones. It was observed between the two kinds of biomarkers
there was only one gene, RNF4, in common. The expected
number of overlap genes should be 2.29 and the odds ratio
was 0.432. In other words, there was less overlap than
expected. It was reported that in different stages of disease,
different regions of the biological network are activated [2]
and the dynamics of the biological network reflects the
histopathology and clinical changes [6, 46]. The shifting from
the activated region of early stage biomarkers to the activated
region of late stage biomarkers in the biological network
explains the under overlap between the early and late stage
biomarkers, which may also help understand the colorectal
cancer progression. In the following section, we are to study
the transition processes in which the early stage biomarkers
propagate the disease-aggravating signal to the late stage
biomarkers, triggering the patients to develop into the most
severe condition.

3.3. From Early Stage Biomarkers to Late Stage Biomarkers:
The Transition. There were 136 early stage biomarkers and
230 late stage biomarkers that could be mapped onto the
STRING network. The number of all possible combina-
tion pairs between the early and late stage biomarkers
was 136 x 230 = 31,280, for each of which we calculated their
shortest path length that was the sum of the edge weights
in the shortest path. Furthermore, we calculated the Pearson
correlation test FDR between them in Dukes B patients and
Dukes C patients. Two criteria were applied to get the signal
propagation path from early stage biomarkers to late stage
biomarkers: the path length should be shorter than 300 and
the correlation test FDR should be smaller than 0.001. There
were 632 such signal propagation paths, as given in Table
S3. Such 632 signal propagation paths linked 76 early stage
biomarkers and 109 late stage biomarkers. Shown in Figure 3
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FIGURE 2: The IFS curves of early stage biomarkers and late stage biomarker. (a) The IFS curves of early stage biomarker selection. The highest
accuracy was 0.891 with 158 genes which were the early stage biomarkers. (b) The IFS curves of late stage biomarker selection. The highest
accuracy was 0.855 with 284 genes which were the late stage biomarkers.

are the transition networks from early stage biomarkers to late
stage biomarkers.

Meanwhile, the values of FDR for the identified signal
propagation paths were also calculated by first permuting the
gene symbols in the protein interaction network and gene
expression profiles and then comparing the permuted short-
est path length and Pearson correlation FDR with the actual
ones. Based on the results of the 20,000 permutations, the
statistical significance of each identified signal propagation
path was evaluated. It was found that all the 632 identified
signal propagation paths were with FDR less than 0.05 and
81.3% of them had FDR less than 0.01.

3.4. The Transition Hubs in Signal Propagation. The 632 signal
propagation paths crossed 473 genes. We ranked each of
the 473 transition genes based on the number of signal
propagation paths that had crossed it. The genes crossed
by more signal propagation paths were regarded as more
important transition hubs. The detailed results of the 473
transition genes as well as the numbers of signal propagation
paths that had crossed them can be found in Table S4. The
top three transition hubs were TP53 (tumor protein 53),
CTNNBI (cadherin-associated protein, beta 1), and EP300
(E1A binding protein p300). Interestingly, two of them, TP53
and EP300, were colorectal cancer genes, fully consistent with
the reports in the Online Mendelian Inheritance in Man [47]
(OMIM, http://omim.org/entry/114500).

4. Discussion

4.1. The Biological Functions of Early Stage Biomarkers, Late
Stage Biomarkers, and Transition Genes. We used GATHER

(48] (http://gather.genome.duke.edu/) to investigate the bio-
logical functions of the 158 early stage biomarkers, the 284
late stage biomarkers, and the 473 transition genes. The
Gene Ontology (GO) enrichment results thus obtained are
shown in Tables 1, 2, and 3, respectively. Since the 473
transition genes were enriched into too many GO terms,
only the five enriched GO terms with the highest Bayes
factor [49] were shown in Table 3. It is instructive to point
out that the late stage biomarkers had more enriched GO
terms than the early stage biomarkers. Also, the late stage
biomarkers were more enriched in the common GO terms
than the early stage biomarkers, such as “G0O:0009607:
response to biotic stimulus,” “GO:0006952: defense response,”
and “G0:0006955: immune response.” The roles of defense
response and immune response in colorectal cancer [50, 51]
have been widely studied. Many of the transition genes were
involved in the signal transduction, cell communication,
and cellular process regulation. These kinds of functions
played important roles in transducing the disease signal and
aggravating the colorectal cancer.

4.2. The Overlapped Gene between Early Stage Biomarkers
and Late Stage Biomarkers. One overlapped gene, RNF4
(RING finger protein 4), was observed between the early
stage biomarkers and the late stage biomarkers. As reported
in [52], RNF4 was a patented biomarker gene of colorec-
tal cancer. Also, as reported in [53], downregulation of
RNF4 was related to the colorectal cancer risk (http://
www.wipo.int/patentscope/search/en/W02010033371).

Since RNF4 plays a unique role in ubiquitylation [54],
DNA demethylation [35], and DNA repair [35], the colorectal
cancer progression may involve the abnormal ubiquitylation
and demethylation.
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GFPT1 is the key enzyme in hexosamine synthesis path-

Mitochondrial antiviral signaling (MAVS) protein is
way whose products have been implicated in O-linked N-

ability to escape the immune-mediated lysis [56]. This might

explain why MAVS was an early stage biomarker, but not a

late stage biomarker.
acetylglucosamine (O-GlcNAc) protein modification, insulin

[55]. Immune responses usually occur early in the cancer
progression stage but later the cancer cells may develop an

CREBBP — TP53 — ATF3 — ATF4 — ASNS — GLUL
to induce immune responses can be used to treat cancer

to GFPT1 in the STRING network: MAVS — IRF3 —
— GFPTI.

important in innate immunity [13

>

ANGPTL4

was both early and late stage biomarker. The red and blue edges indicated that the early
MAP7D1, CEACAM], and PGRMCI. Among the 158 early

and late stage biomarkers were positively and negatively correlated.

RNF4,
TET3, GAS],

>

FIGURE 3: The transition network from early stage biomarkers to late stage biomarkers. The yellow and grey nodes were early and late stage
respectively. The orange node,

4.3. The Signal Propagation Path from the Early Stage

Biomarker MAVS to the Late Stage Biomarker GFPTI. It is
Dukes C patients were 1.09¢ — 05 and 0.317, respectively.
Shown in Figure 4 is the signal propagation path from MAVS

and Pearson correlation coefficient between the expression
levels of MAVS and GFPTI in the Dukes B patients and the

early stage. We traced back in the signal propagation paths
and found GFPTI was the downstream of the following seven
stage biomarkers, MAVS was ranked no. 4, but MAVS was not
a late stage biomarker. The Pearson correlation test P value

interesting to see that GFPT1 was ranked no. 1 among the late
stage biomarkers although it was even not a biomarker in the

early stage biomarkers: MAVS

biomarkers,
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TaBLE 1: The enriched GO terms of the 158 early stage biomarkers with adjusted P value less than 0.01.

Number of input genes

Gene ontology with the annotation Adjusted P value
GO0:0009607: response to biotic stimulus 16 0.001
GO:0006952: defense response 14 0.004
GO:0006955: immune response 13 0.004
TaBLE 2: The enriched GO terms of the 284 late stage biomarkers with adjusted P value less than 0.01.
Gene ontology Nur.nber of input genes Adjusted P value
with the annotation
GO:0006952: defense response 25 0.0002
GO:0006955: immune response 23 0.0002
GO0:0016064: immunoglobulin mediated immune response 8 0.0006
GO0:0006959: humoral immune response 9 0.001
GO:0009607: response to biotic stimulus 25 0.002
GO:0019730: antimicrobial humoral response 6 0.005
TaBLE 3: The most enriched five GO terms of the 473 transition genes.
Gene ontology Nul.nber of input genes Adjusted P value Bayes factor
with the annotation

GO:0008283: cell proliferation 107 <0.0001 47
GO0:0007154: cell communication 219 <0.0001 43
GO0:0007165: signal transduction 191 <0.0001 43
GO:0051244: regulation of cellular physiological process 71 <0.0001 40
GO0:0050794: regulation of cellular process 84 <0.0001 38
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FIGURE 4: The signal propagation path from MAVS to GFPT1. The signal propagation path from MAVS to GFPT1 was MAVS — IRF3 —
CREBBP — TP53 — ATF3 — ATF4 — ASNS — GLUL — GFPTIL The genes in the signal propagation path were mapped onto STRING
network. The number on the edge was the edge weight. The edges on the signal propagation path were highlighted with pink color.
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resistance, and glucose toxicity [16, 17]. It is a molecular
therapeutic target for type-2 diabetes [57, 58]. As a metabolic
disease, cancer is always accompanied with impaired mito-
chondrial function and dysfunctional energy metabolism
[59].

Accordingly, it is rational to deduce the signal propaga-
tion from MAVS to GFPT]1 as follows: in mitochondria, as an
important innate immunity protein, MAVS may response to
colorectal cancer in a very early stage. Then as a signaling
protein, it transmits its signal to GFPTI that has close
relationship with mitochondria. The perturbation of GFPT1
may cause the dysfunction of mitochondria in the energy
metabolism. The fates of the cells may be doomed by the
collapse of their energy systems.

5. Conclusions

Our results indicated that the strong signals of early stage
biomarkers would not necessarily disappear during the
colorectal cancer progression, but might be transferred to
other late stage biomarkers. This finding may provide useful
insights for in-depth analyzing the signal propagation paths
and helping to reveal the cellular mechanism of colorectal
cancer aggravation.
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